PT_network is a framwrok for deep learning experiments base on pytorch, which implements the following algorithms:
YOLOF:You Only Look One-level Feature(CVPR'2021)
FCOS: Fully Convolutional One-Stage Object Detection(ICCV'2019)
The dataset type has VOCDataset and DetectionDataset.
Follow the VOC dataset format:
├─Annotations
├─ImageSets
│ └─Main
└─JPEGImages
The json file is configured as follows:
"dataset": {
"input_size": [640, 640],
"type": "VOCDataset",
"train_data_path": "~/VOCdevkit/VOC2012",
"val_data_path": "~/VOCdevkit/VOC2012"
}
The annotations for the DetectionDataset is a json file generated with Labelme.
Images path and annotations path format is as follows:
├─train
│ ├─images
│ ├─annotations
└─val
├─annotations
└─images
The json file is configured as follows:
"dataset": {
"input_size": [640, 640],
"type": "DetectionDataset",
"train_data_path": "~/minidataset/train",
"val_data_path": "~/minidataset/val"
},
you can set parameters in "tools/config/det/yolof/yolof_resnet18_voc.json"
python /tools/train.py --config=tools/config/det/yolof/yolof_resnet18_voc.json
Model | Backbone | Neck | FLOPS | DataSet(Close source) | AP |
---|---|---|---|---|---|
YOLOF | resnet18 | DilatedEncoder | 44.1 | Industrial Dataset | 0.883 |
FCOS | resnet18 | NASFCOS_FPN | 98.7 | Industrial Dataset | 0.8595 |
FCOS | resnet18 | FPN | 80.2 | Industrial Dataset | 0.9097 |