forked from IDEA-Research/Grounded-Segment-Anything
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
320 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
# Configuration for Cog ⚙️ | ||
# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md | ||
|
||
build: | ||
gpu: true | ||
cuda: "11.7" | ||
system_packages: | ||
- "libgl1-mesa-glx" | ||
- "libglib2.0-0" | ||
python_version: "3.10" | ||
python_packages: | ||
- "timm==0.9.2" | ||
- "transformers==4.30.2" | ||
- "fairscale==0.4.13" | ||
- "pycocoevalcap==1.2" | ||
- "torch==1.13.0" | ||
- "torchvision==0.14.0" | ||
- "Pillow==9.5.0" | ||
- "scipy==1.10.1" | ||
- "opencv-python==4.7.0.72" | ||
- "addict==2.4.0" | ||
- "yapf==0.40.0" | ||
- "supervision==0.10.0" | ||
- git+https://github.com/openai/CLIP.git | ||
- ipython | ||
|
||
predict: "predict.py:Predictor" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
# Prediction interface for Cog ⚙️ | ||
# https://github.com/replicate/cog/blob/main/docs/python.md | ||
|
||
import os | ||
import json | ||
from typing import Any | ||
import numpy as np | ||
import random | ||
import torch | ||
import torchvision | ||
import torchvision.transforms as transforms | ||
from PIL import Image | ||
import cv2 | ||
import matplotlib.pyplot as plt | ||
from cog import BasePredictor, Input, Path, BaseModel | ||
|
||
from subprocess import call | ||
|
||
HOME = os.getcwd() | ||
os.chdir("GroundingDINO") | ||
call("pip install -q .", shell=True) | ||
os.chdir(HOME) | ||
os.chdir("segment_anything") | ||
call("pip install -q .", shell=True) | ||
os.chdir(HOME) | ||
|
||
# Grounding DINO | ||
import GroundingDINO.groundingdino.datasets.transforms as T | ||
from GroundingDINO.groundingdino.models import build_model | ||
from GroundingDINO.groundingdino.util.slconfig import SLConfig | ||
from GroundingDINO.groundingdino.util.utils import ( | ||
clean_state_dict, | ||
get_phrases_from_posmap, | ||
) | ||
|
||
# segment anything | ||
from segment_anything import build_sam, build_sam_hq, SamPredictor | ||
|
||
import sys | ||
|
||
sys.path.append("Tag2Text") | ||
from models.tag2text import ram | ||
|
||
|
||
class ModelOutput(BaseModel): | ||
tags: str | ||
rounding_box_img: Path | ||
masked_img: Path | ||
json_data: Any | ||
|
||
|
||
class Predictor(BasePredictor): | ||
def setup(self): | ||
"""Load the model into memory to make running multiple predictions efficient""" | ||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
normalize = transforms.Normalize( | ||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | ||
) | ||
self.image_size = 384 | ||
self.transform = transforms.Compose( | ||
[ | ||
transforms.Resize((self.image_size, self.image_size)), | ||
transforms.ToTensor(), | ||
normalize, | ||
] | ||
) | ||
|
||
# load model | ||
self.ram_model = ram( | ||
pretrained="pretrained/ram_swin_large_14m.pth", | ||
image_size=self.image_size, | ||
vit="swin_l", | ||
) | ||
self.ram_model.eval() | ||
self.ram_model = self.ram_model.to(self.device) | ||
|
||
self.model = load_model( | ||
"GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py", | ||
"pretrained/groundingdino_swint_ogc.pth", | ||
device=self.device, | ||
) | ||
|
||
self.sam = SamPredictor( | ||
build_sam(checkpoint="pretrained/sam_vit_h_4b8939.pth").to(self.device) | ||
) | ||
self.sam_hq = SamPredictor( | ||
build_sam_hq(checkpoint="pretrained/sam_hq_vit_h.pth").to(self.device) | ||
) | ||
|
||
def predict( | ||
self, | ||
input_image: Path = Input(description="Input image"), | ||
use_sam_hq: bool = Input( | ||
description="Use sam_hq instead of SAM for prediction", default=False | ||
), | ||
) -> ModelOutput: | ||
"""Run a single prediction on the model""" | ||
|
||
# default settings | ||
box_threshold = 0.25 | ||
text_threshold = 0.2 | ||
iou_threshold = 0.5 | ||
|
||
image_pil, image = load_image(str(input_image)) | ||
|
||
raw_image = image_pil.resize((self.image_size, self.image_size)) | ||
raw_image = self.transform(raw_image).unsqueeze(0).to(self.device) | ||
|
||
with torch.no_grad(): | ||
tags, tags_chinese = self.ram_model.generate_tag(raw_image) | ||
|
||
tags = tags[0].replace(" |", ",") | ||
|
||
# run grounding dino model | ||
boxes_filt, scores, pred_phrases = get_grounding_output( | ||
self.model, image, tags, box_threshold, text_threshold, device=self.device | ||
) | ||
|
||
predictor = self.sam_hq if use_sam_hq else self.sam | ||
|
||
image = cv2.imread(str(input_image)) | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
predictor.set_image(image) | ||
|
||
size = image_pil.size | ||
H, W = size[1], size[0] | ||
for i in range(boxes_filt.size(0)): | ||
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | ||
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | ||
boxes_filt[i][2:] += boxes_filt[i][:2] | ||
|
||
boxes_filt = boxes_filt.cpu() | ||
# use NMS to handle overlapped boxes | ||
print(f"Before NMS: {boxes_filt.shape[0]} boxes") | ||
nms_idx = ( | ||
torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | ||
) | ||
boxes_filt = boxes_filt[nms_idx] | ||
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | ||
print(f"After NMS: {boxes_filt.shape[0]} boxes") | ||
|
||
transformed_boxes = predictor.transform.apply_boxes_torch( | ||
boxes_filt, image.shape[:2] | ||
).to(self.device) | ||
|
||
masks, _, _ = predictor.predict_torch( | ||
point_coords=None, | ||
point_labels=None, | ||
boxes=transformed_boxes.to(self.device), | ||
multimask_output=False, | ||
) | ||
|
||
# draw output image | ||
plt.figure(figsize=(10, 10)) | ||
for mask in masks: | ||
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) | ||
for box, label in zip(boxes_filt, pred_phrases): | ||
show_box(box.numpy(), plt.gca(), label) | ||
|
||
rounding_box_path = "/tmp/automatic_label_output.png" | ||
plt.axis("off") | ||
plt.savefig( | ||
Path(rounding_box_path), bbox_inches="tight", dpi=300, pad_inches=0.0 | ||
) | ||
plt.close() | ||
|
||
# save masks and json data | ||
value = 0 # 0 for background | ||
mask_img = torch.zeros(masks.shape[-2:]) | ||
for idx, mask in enumerate(masks): | ||
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1 | ||
plt.figure(figsize=(10, 10)) | ||
plt.imshow(mask_img.numpy()) | ||
plt.axis("off") | ||
masks_path = "/tmp/mask.png" | ||
plt.savefig(masks_path, bbox_inches="tight", dpi=300, pad_inches=0.0) | ||
plt.close() | ||
|
||
json_data = { | ||
"tags": tags, | ||
"mask": [{"value": value, "label": "background"}], | ||
} | ||
for label, box in zip(pred_phrases, boxes_filt): | ||
value += 1 | ||
name, logit = label.split("(") | ||
logit = logit[:-1] # the last is ')' | ||
json_data["mask"].append( | ||
{ | ||
"value": value, | ||
"label": name, | ||
"logit": float(logit), | ||
"box": box.numpy().tolist(), | ||
} | ||
) | ||
|
||
json_path = "/tmp/label.json" | ||
with open(json_path, "w") as f: | ||
json.dump(json_data, f) | ||
|
||
return ModelOutput( | ||
tags=tags, | ||
masked_img=Path(masks_path), | ||
rounding_box_img=Path(rounding_box_path), | ||
json_data=Path(json_path), | ||
) | ||
|
||
|
||
def get_grounding_output( | ||
model, image, caption, box_threshold, text_threshold, device="cpu" | ||
): | ||
caption = caption.lower() | ||
caption = caption.strip() | ||
if not caption.endswith("."): | ||
caption = caption + "." | ||
model = model.to(device) | ||
image = image.to(device) | ||
with torch.no_grad(): | ||
outputs = model(image[None], captions=[caption]) | ||
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | ||
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | ||
logits.shape[0] | ||
|
||
# filter output | ||
logits_filt = logits.clone() | ||
boxes_filt = boxes.clone() | ||
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | ||
logits_filt = logits_filt[filt_mask] # num_filt, 256 | ||
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | ||
logits_filt.shape[0] | ||
|
||
# get phrase | ||
tokenlizer = model.tokenizer | ||
tokenized = tokenlizer(caption) | ||
# build pred | ||
pred_phrases = [] | ||
scores = [] | ||
for logit, box in zip(logits_filt, boxes_filt): | ||
pred_phrase = get_phrases_from_posmap( | ||
logit > text_threshold, tokenized, tokenlizer | ||
) | ||
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | ||
scores.append(logit.max().item()) | ||
|
||
return boxes_filt, torch.Tensor(scores), pred_phrases | ||
|
||
|
||
def load_image(image_path): | ||
# load image | ||
image_pil = Image.open(image_path).convert("RGB") # load image | ||
|
||
transform = T.Compose( | ||
[ | ||
T.RandomResize([800], max_size=1333), | ||
T.ToTensor(), | ||
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | ||
] | ||
) | ||
image, _ = transform(image_pil, None) # 3, h, w | ||
return image_pil, image | ||
|
||
|
||
def load_model(model_config_path, model_checkpoint_path, device): | ||
args = SLConfig.fromfile(model_config_path) | ||
args.device = device | ||
model = build_model(args) | ||
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") | ||
load_res = model.load_state_dict( | ||
clean_state_dict(checkpoint["model"]), strict=False | ||
) | ||
print(load_res) | ||
_ = model.eval() | ||
return model | ||
|
||
|
||
def show_mask(mask, ax, random_color=False): | ||
if random_color: | ||
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | ||
else: | ||
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) | ||
h, w = mask.shape[-2:] | ||
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | ||
ax.imshow(mask_image) | ||
|
||
|
||
def show_box(box, ax, label): | ||
x0, y0 = box[0], box[1] | ||
w, h = box[2] - box[0], box[3] - box[1] | ||
ax.add_patch( | ||
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=1.5) | ||
) | ||
ax.text(x0, y0, label) |