Skip to content

Commit

Permalink
Windows compiler
Browse files Browse the repository at this point in the history
hosseinmoein committed Dec 11, 2024
1 parent 5a76f3c commit ed26e48
Showing 2 changed files with 61 additions and 1 deletion.
22 changes: 21 additions & 1 deletion include/DataFrame/Utils/Matrix.h
Original file line number Diff line number Diff line change
@@ -118,6 +118,26 @@ class Matrix {
//
Matrix inverse() const;

// Variance/Covariance matrix.
// The columns of the matrix are assumed to be observations of some
// random variable. So the covariance matrix is a square matrix
// containing the covariances of the above random variables.
//
// If it is unbiased the estimate is divided by n - 1, otherwise by n,
// n being the number of rows.
//
// The reason for dividing by n - 1 is because we are dividing by
// degrees of freedom (i.e. number of independent observations).
// For example, if we have two observations, when calculating the mean
// we have two independent observations; however, when calculating the
// variance, we have only one independent observation, since the two
// observations are equally distant from the mean.
//
// For a nXm matrix, you will get a mXm covariance matrix
//
Matrix
covariance(bool is_unbiased = true) const;

// Let A be an nXn matrix. The number l is an eigenvalue of A if there
// exists a non-zero vector v such that
// Av = lv
@@ -195,7 +215,7 @@ class Matrix {

using storage_t = std::vector<value_type>;

inline static constexpr value_type EPSILON_ { 2.220446e-16 };
inline static constexpr value_type EPSILON_ { value_type(2.220446e-16) };

// Partial pivoting for Gaussian elimination:
//
40 changes: 40 additions & 0 deletions include/DataFrame/Utils/Matrix.tcc
Original file line number Diff line number Diff line change
@@ -1215,6 +1215,46 @@ eigen_space(MA1 &eigenvalues, MA2 &eigenvectors, bool sort_values) const {
return;
}


// ----------------------------------------------------------------------------

template<typename T, matrix_orient MO>
Matrix<T, MO> Matrix<T, MO>::
covariance(bool is_unbiased) const {

const value_type denom = is_unbiased ? rows() - 1 : rows();

if (denom <= value_type(0))
throw DataFrameError("Matrix::covariance(): Not solvable");

Matrix result (cols(), cols());
row_iterator res_iter = result.row_begin ();

// I don't know how I can take advantage of the fact this is a
// symmetric matrix by definition
//
for (size_type c = 0; c < cols(); ++c) {
value_type col_mean { 0 };
size_type counter { 0 };

for (auto cciter = col_begin() + c * rows();
counter != rows(); ++cciter, ++counter)
col_mean += *cciter;

col_mean /= value_type(rows());

for (size_type cc = 0; cc < cols(); ++cc) {
value_type var_covar { 0 };

for (size_type r = 0; r < rows(); ++r)
var_covar += (at(r, c) - col_mean) * (at(r, cc) - col_mean);

*res_iter++ = var_covar / denom;
}
}

return (result);
}

} // namespace hmdf

0 comments on commit ed26e48

Please sign in to comment.