-
Notifications
You must be signed in to change notification settings - Fork 0
Torch errors
Hlib edited this page Jan 13, 2019
·
10 revisions
ImportError: Failed to import test module: langmodel.decode_text
Traceback (most recent call last):
File "/home/travis/miniconda/envs/fastai/lib/python3.6/unittest/loader.py", line 428, in _find_test_path
module = self._get_module_from_name(name)
File "/home/travis/miniconda/envs/fastai/lib/python3.6/unittest/loader.py", line 369, in _get_module_from_name
__import__(name)
File "/home/travis/build/hlibbabii/log-recommender/tests/langmodel/decode_text.py", line 3, in <module>
from logrec.langmodel.utils import beautify_text
File "/home/travis/build/hlibbabii/log-recommender/tests/../logrec/langmodel/utils.py", line 5, in <module>
from fastai.core import to_np, to_gpu
File "/home/travis/build/hlibbabii/log-recommender/logrec/../../fastai-fork/fastai/core.py", line 2, in <module>
from .torch_imports import *
File "/home/travis/build/hlibbabii/log-recommender/logrec/../../fastai-fork/fastai/torch_imports.py", line 3, in <module>
import torch, torchvision, torchtext
File "/home/travis/miniconda/envs/fastai/lib/python3.6/site-packages/torch/__init__.py", line 56, in <module>
from torch._C import *
ImportError: dlopen: cannot load any more object with static TLS
move import torch
up or down
ERROR: classifier.dataset_generator (unittest.loader._FailedTest)
----------------------------------------------------------------------
ImportError: Failed to import test module: classifier.dataset_generator
Traceback (most recent call last):
File "/home/travis/miniconda/envs/fastai/lib/python3.6/unittest/loader.py", line 428, in _find_test_path
module = self._get_module_from_name(name)
File "/home/travis/miniconda/envs/fastai/lib/python3.6/unittest/loader.py", line 369, in _get_module_from_name
__import__(name)
File "/home/travis/build/hlibbabii/log-recommender/tests/classifier/dataset_generator.py", line 3, in <module>
from logrec.classifier.dataset_generator import create_case
File "/home/travis/build/hlibbabii/log-recommender/tests/../logrec/classifier/dataset_generator.py", line 7, in <module>
from logrec.classifier.context_datasets import ContextsDataset, get_dir_and_file, WORDS_IN_CONTEXT_LIMIT
File "/home/travis/build/hlibbabii/log-recommender/tests/../logrec/classifier/context_datasets.py", line 5, in <module>
from torchtext import data
File "/home/travis/miniconda/envs/fastai/lib/python3.6/site-packages/torchtext/__init__.py", line 1, in <module>
from . import data
File "/home/travis/miniconda/envs/fastai/lib/python3.6/site-packages/torchtext/data/__init__.py", line 4, in <module>
from .field import RawField, Field, ReversibleField, SubwordField, NestedField, LabelField
File "/home/travis/miniconda/envs/fastai/lib/python3.6/site-packages/torchtext/data/field.py", line 61, in <module>
class Field(RawField):
File "/home/travis/miniconda/envs/fastai/lib/python3.6/site-packages/torchtext/data/field.py", line 118, in Field
torch.float32: float,
AttributeError: module 'torch' has no attribute 'float32'
in fastai/environment.yml:
- torchtext==0.2.3
File "logrec/classifier/log_position_classifier.py", line 171, in <module>
run(args.force_rerun)
File "logrec/classifier/log_position_classifier.py", line 157, in run
show_tests(fs.classification_test_path, model, text_field)
File "logrec/classifier/log_position_classifier.py", line 113, in show_tests
output_predictions(model, text_field, LEVEL_LABEL, context.rstrip("\n"), 2, label.rstrip("\n"))
File "/home/lv71161/hlibbabii/log-recommender/logrec/langmodel/utils.py", line 21, in output_predictions
t=to_gpu(input_field.numericalize(words, -1))
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torchtext/data/field.py", line 310, in numericalize
arr = self.tensor_type(arr)
RuntimeError: given sequence has an invalid size of dimension 2: 0
Text field in the example is an empty list
increase data/decrease bptt
logits = torch.mv(valid_pointer_history, rnn_out[idx])
RuntimeError: matrix and vector expected, got 3D, 2D at /opt/conda/conda-bld/pytorch_1518244421288/work/torch/lib/TH/generic/THTensorMath.c:1324:
batch size should be 1
File "/home/hlib/thesis/fastai-fork/fastai/model.py", line 180, in fit validate_skip=validate_skip, text_field=text_field) File "/home/hlib/thesis/fastai-fork/fastai/model.py", line 257, in validate for (*x, y) in iter(dl): File "/home/hlib/thesis/fastai-fork/fastai/nlp.py", line 133, in next if self.i >= self.n-1 or self.iter>=len(self): raise StopIteration ValueError: len() should return >= 0
Try setting smaller bptt?
File "logrec/classifier/log_position_classifier.py", line 215, in <module>
run(args.force_rerun)
File "logrec/classifier/log_position_classifier.py", line 194, in run
train(fs, learner, classifier_training_param.classifier_training)
File "logrec/classifier/log_position_classifier.py", line 99, in train
file=open(training_log_file, 'w+')
File "/home/lv71161/hlibbabii/fastai/fastai/learner.py", line 293, in fit
return self.fit_gen(self.model, self.data, layer_opt, n_cycle, **kwargs)
File "/home/lv71161/hlibbabii/fastai/fastai/learner.py", line 240, in fit_gen
swa_eval_freq=swa_eval_freq, text_field=self.text_field, **kwargs)
File "/home/lv71161/hlibbabii/fastai/fastai/model.py", line 153, in fit
loss = model_stepper.step(V(x),V(y), epoch)
File "/home/lv71161/hlibbabii/fastai/fastai/model.py", line 50, in step
output = self.m(*xs)
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/container.py", line 67, in forward
input = module(input)
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "/home/lv71161/hlibbabii/fastai/fastai/lm_rnn.py", line 218, in forward
l_x = l(x)
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "/home/lv71161/hlibbabii/fastai/fastai/lm_rnn.py", line 197, in forward
def forward(self, x): return self.lin(self.drop(self.bn(x)))
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/module.py", line 357, in __call__
result = self.forward(*input, **kwargs)
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/modules/batchnorm.py", line 37, in forward
self.training, self.momentum, self.eps)
File "/home/lv71161/hlibbabii/anaconda3/envs/fastai/lib/python3.6/site-packages/torch/nn/functional.py", line 1011, in batch_norm
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
ValueError: Expected more than 1 value per channel when training, got input size [1, 900]