-
Notifications
You must be signed in to change notification settings - Fork 1
/
draw_obstacles_concave.m
131 lines (108 loc) · 2.63 KB
/
draw_obstacles_concave.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
clear all
objects = {};
% Vehicle Geometry
l = convlength(106.3,'in','m');
a = l/2;
w = convlength(60.9,'in','m')/2;
vehicle_res = 20;
res = 1;
tol = 0.1;
% Obstacle Geometry
O = [40 40 35 35;
40 10 10 40];
P = [35 35 20 20;
40 35 35 40];
Q = [35 35 20 20;
15 10 10 15];
objects = createobject(objects, O);
objects = createobject(objects, P);
objects = createobject(objects, Q);
robot = createrobot(l+res,2*w+res,vehicle_res);
%fill(B(1,:),B(2,:),[0 0 0]);
N = 20000; % number of samples on xy plane
Nt = 100; % number of samples along so(2)
% Fixed Spacing
%x = linspace(0,10,N);
%y = linspace(0,10,N);
%theta = linspace(0,2*pi,N);
% Random Spacing
x = [];
y = [];
theta = [];
collision = [];
s = [30; 30; -pi];
t = [45; 45; 0];
while(true)
xg = 50*rand();
yg = 50*rand();
thetag = 2*pi*rand();
collision_test_result = testcollision(objects, robot, xg, yg, thetag, vehicle_res);
if(collision_test_result == 0)
x = [x xg];
y = [y yg];
theta = [theta thetag];
end
if(length(x) == N)
break;
end
end
x(end-1:end) = [s(1) t(1)];
y(end-1:end) = [s(2) t(2)];
theta(end-1:end) = [s(3) t(3)];
% x = 50*rand(N,1);
% y = 50*rand(N,1);
% theta = -pi + 2*pi*rand(N,1);
A = zeros(N,N);
for i=1:N
P = [];
% Proximity Search
for j=1:N
if (sqrt((x(i)-x(j))^2+(y(i)-y(j))^2) < res) && (i ~= j)
P = [P; j];
end
end
% Non-holonomic constraint
for k=1:length(P)
ix = P(k);
A(P(k),i) = sqrt((x(ix)-x(i))^2+(y(ix)-y(i))^2);
A(i,P(k)) = sqrt((x(ix)-x(i))^2+(y(ix)-y(i))^2);
end
end
G = graph(A);
s = N - 1;
t = N;
path = shortestpath(G,s,t);
figure
hold on
axis equal
for i=1:length(objects)
object = cell2mat(objects(i));
fill(object(1,:),object(2,:),[0.9 0.45 0.25]);
end
for i=1:N
plot(x(i),y(i),'ko','Markersize',0.5);
end
plot(x(s),y(s),'ro','Markersize',9);
plot(x(t),y(t),'bo','Markersize',9);
for i=1:length(path)-1
index1 = path(i);
index2 = path(i+1);
x1 = x(index1);
y1 = y(index1);
x2 = x(index2);
y2 = y(index2);
line([x1 x2], [y1 y2], 'Color', 'green', 'LineWidth', 3);
% draw_car(x1, y1, theta(index1), a, w, 0);
end
draw_car(x(s),y(s),theta(s), a, w, 1);
draw_car(x(t),y(t),theta(t), a, w, 0);
% figure
% hold on
% axis equal
% grid on
% object = cell2mat(objects(3));
% fill(object(1,:),object(2,:),[0.9 0.45 0.25]);
% for i=1:(vehicle_res^2)
% rotated_robot = (rot2d(deg2rad(60)) * robot) + repmat([9.5; 9.5],1,vehicle_res^2);
% plot(rotated_robot(1,i), rotated_robot(2,i), 'bo', 'MarkerSize', 2);
% end