- MOVI: A Model-Free Approach to Dynamic Fleet Management
- Distributed Fleet Control with Maximum Entropy Deep Reinforcement Learning
Below you will find step-by-step instructions to set up the NYC taxi simulation using 2016-05 trips for training and 2016-06 trips for evaluation. Please make more than 10 GB memory resource available to Docker Engine.
wget https://download.bbbike.org/osm/bbbike/NewYork/NewYork.osm.pbf -P osrm
cd osrm
docker run -t -v $(pwd):/data osrm/osrm-backend osrm-extract -p /opt/car.lua /data/NewYork.osm.pbf
docker run -t -v $(pwd):/data osrm/osrm-backend osrm-partition /data/NewYork.osrm
docker run -t -v $(pwd):/data osrm/osrm-backend osrm-customize /data/NewYork.osrm
mkdir data
wget https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2016-05.csv -P data/trip_records
wget https://s3.amazonaws.com/nyc-tlc/trip+data/green_tripdata_2016-05.csv -P data/trip_records
wget https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2016-06.csv -P data/trip_records
wget https://s3.amazonaws.com/nyc-tlc/trip+data/green_tripdata_2016-06.csv -P data/trip_records
docker-compose build sim
docker-compose run --no-deps sim python src/preprocessing/preprocess_nyc_dataset.py ./data/trip_records/ --month 2016-05
docker-compose run --no-deps sim python src/preprocessing/preprocess_nyc_dataset.py ./data/trip_records/ --month 2016-06
docker-compose run sim python src/preprocessing/snap_to_road.py ./data/trip_records/trips_2016-05.csv ./data/trip_records/mm_trips_2016-05.csv
docker-compose run sim python src/preprocessing/snap_to_road.py ./data/trip_records/trips_2016-06.csv ./data/trip_records/mm_trips_2016-06.csv
docker-compose run --no-deps sim python src/preprocessing/create_db.py ./data/trip_records/mm_trips_2016-06.csv
docker-compose run --no-deps sim python src/preprocessing/create_profile.py ./data/trip_records/mm_trips_2016-05.csv
docker-compose run sim python src/preprocessing/create_tt_map.py ./data
The tt_map needs to be recreated when you change simulation settings such as MAX_MOVE.
You can find simulation setting files in src/config/settings
and src/dqn/settings
.
This mode
docker-compose up
sim
container is created and runs bin/run.sh
.
This mode uses precomputed ETA and trajectories by OSRM, which is much faster than above.
docker-compose run --no-deps sim python src/run.py --train --tag test