-
Notifications
You must be signed in to change notification settings - Fork 234
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Mahmoud Hanafy
committed
May 21, 2016
1 parent
2d0517e
commit 2202e90
Showing
2 changed files
with
150 additions
and
5 deletions.
There are no files selected for viewing
140 changes: 140 additions & 0 deletions
140
src/main/java/com/highperformancespark/examples/dataframe/JavaLoadSave.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
package com.highperformancespark.examples.dataframe; | ||
|
||
import com.highperformancespark.examples.objects.JavaPandaPlace; | ||
import com.highperformancespark.examples.objects.JavaRawPanda; | ||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.sql.*; | ||
import org.apache.spark.sql.types.*; | ||
|
||
import java.util.List; | ||
import java.util.Properties; | ||
import java.util.stream.Collectors; | ||
|
||
public class JavaLoadSave { | ||
private SQLContext sqlContext; | ||
|
||
public JavaLoadSave(SQLContext sqlContext) { | ||
this.sqlContext = sqlContext; | ||
} | ||
|
||
//tag::createFromRDD[] | ||
public DataFrame createFromJavaBean(JavaRDD<JavaPandaPlace> input) { | ||
// Create DataFrame using Java Bean | ||
DataFrame df1 = sqlContext.createDataFrame(input, JavaPandaPlace.class); | ||
|
||
// Create DataFrame using JavaRDD<Row> | ||
JavaRDD<Row> rowRDD = input.map(pm -> RowFactory.create(pm.getName(), | ||
pm.getPandas().stream() | ||
.map(pi -> RowFactory.create(pi.getId(), pi.getZip(), pi.isHappy(), pi.getAttributes())) | ||
.collect(Collectors.toList()))); | ||
|
||
ArrayType pandasType = DataTypes.createArrayType(new StructType( | ||
new StructField[]{ | ||
new StructField("id", DataTypes.LongType, true, Metadata.empty()), | ||
new StructField("zip", DataTypes.StringType, true, Metadata.empty()), | ||
new StructField("happy", DataTypes.BooleanType, true, Metadata.empty()), | ||
new StructField("attributes", DataTypes.createArrayType(DataTypes.FloatType), true, Metadata.empty()) | ||
} | ||
)); | ||
|
||
StructType schema = new StructType(new StructField[]{ | ||
new StructField("name", DataTypes.StringType, true, Metadata.empty()), | ||
new StructField("pandas", pandasType, true, Metadata.empty()) | ||
}); | ||
|
||
DataFrame df2 = sqlContext.createDataFrame(rowRDD, schema); | ||
return df2; | ||
} | ||
//end::createFromRDD[] | ||
|
||
//tag::createFromLocal[] | ||
public DataFrame createFromLocal(List<PandaPlace> input) { | ||
return sqlContext.createDataFrame(input, PandaPlace.class); | ||
} | ||
//end::createFromLocal[] | ||
|
||
//tag::collectResults[] | ||
public Row[] collectDF(DataFrame df) { | ||
return df.collect(); | ||
} | ||
//end::collectResults[] | ||
|
||
//tag::toRDD[] | ||
public JavaRDD<JavaRawPanda> toRDD(DataFrame input) { | ||
JavaRDD<JavaRawPanda> rdd = input.javaRDD().map(row -> new JavaRawPanda(row.getLong(0), row.getString(1), | ||
row.getString(2), row.getBoolean(3), row.getList(4))); | ||
return rdd; | ||
} | ||
//end::toRDD[] | ||
|
||
//tag::partitionedOutput[] | ||
public void writeOutByZip(DataFrame input) { | ||
input.write().partitionBy("zipcode").format("json").save("output/"); | ||
} | ||
//end::partitionedOutput[] | ||
|
||
//tag::saveAppend[] | ||
public void writeAppend(DataFrame input) { | ||
input.write().mode(SaveMode.Append).save("output/"); | ||
} | ||
//end::saveAppend[] | ||
|
||
public DataFrame createJDBC() { | ||
//tag::createJDBC[] | ||
DataFrame df1 = sqlContext.read().jdbc("jdbc:dialect:serverName;user=user;password=pass", | ||
"table", new Properties()); | ||
|
||
DataFrame df2 = sqlContext.read().format("jdbc") | ||
.option("url", "jdbc:dialect:serverName") | ||
.option("dbtable", "table").load(); | ||
|
||
return df2; | ||
//end::createJDBC[] | ||
} | ||
|
||
public void writeJDBC(DataFrame df) { | ||
//tag::writeJDBC[] | ||
df.write().jdbc("jdbc:dialect:serverName;user=user;password=pass", | ||
"table", new Properties()); | ||
|
||
df.write().format("jdbc") | ||
.option("url", "jdbc:dialect:serverName") | ||
.option("user", "user") | ||
.option("password", "pass") | ||
.option("dbtable", "table").save(); | ||
//end::writeJDBC[] | ||
} | ||
|
||
//tag::loadParquet[] | ||
public DataFrame loadParquet(String path) { | ||
// Configure Spark to read binary data as string, note: must be configured on SQLContext | ||
sqlContext.setConf("spark.sql.parquet.binaryAsString", "true"); | ||
|
||
// Load parquet data using merge schema (configured through option) | ||
DataFrame df = sqlContext.read() | ||
.option("mergeSchema", "true") | ||
.format("parquet") | ||
.load(path); | ||
|
||
return df; | ||
} | ||
//end::loadParquet[] | ||
|
||
//tag::writeParquet[] | ||
public void writeParquet(DataFrame df, String path) { | ||
df.write().format("parquet").save(path); | ||
} | ||
//end::writeParquet[] | ||
|
||
//tag::loadHiveTable[] | ||
public DataFrame loadHiveTable() { | ||
return sqlContext.read().table("pandas"); | ||
} | ||
//end::loadHiveTable[] | ||
|
||
//tag::saveManagedTable[] | ||
public void saveManagedTable(DataFrame df) { | ||
df.write().saveAsTable("pandas"); | ||
} | ||
//end::saveManagedTable[] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters