Skip to content

A JavaScript library that uses machine learning to detect source code languages

License

Notifications You must be signed in to change notification settings

hieplpvip/guesslang-js

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Oct 5, 2021
8534683 · Oct 5, 2021

History

20 Commits
Oct 4, 2021
Oct 5, 2021
Oct 5, 2021
Oct 4, 2021
Oct 4, 2021
Oct 5, 2021
Oct 4, 2021
Oct 5, 2021
Oct 4, 2021
Oct 4, 2021
Oct 5, 2021
Oct 5, 2021
Oct 5, 2021
Oct 4, 2021
Oct 5, 2021

Repository files navigation

guesslang-js

A JavaScript library that uses machine learning to detect source code languages. Powered by @yoeo's guesslang model!

Inspired by and modified from vscode-languagedetection to add browser support.

Usage

This library is intended to be used only in browser. For Node.JS, please consider using vscode-languagedetection.

Load the library:

<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/guesslang-js@latest/dist/lib/guesslang.min.js"></script>

Declare sample code:

const code = `
struct Rectangle {
  width: u32,
  height: u32,
}

fn main() {
  let rect1 = Rectangle {
    width: 30,
    height: 50,
  };

  println!(
    "The area of the rectangle is {} square pixels.",
    area(&rect1)
  );
}

fn area(rectangle: &Rectangle) -> u32 {
  rectangle.width * rectangle.height
}
`;

With Promise

const guessLang = new GuessLang();
guessLang.runModel(code).then((result) => {
  console.log(result);
});

With async/await

const guessLang = new GuessLang();
const result = await guessLang.runModel(code);
console.log(result);

You should get an output similar to this:

[
  { "languageId": "rs", "confidence": 0.7457122802734375 },
  { "languageId": "js", "confidence": 0.03622082620859146 },
  { "languageId": "ts", "confidence": 0.02657853439450264 },
  { "languageId": "html", "confidence": 0.018268872052431107 },
  { "languageId": "dart", "confidence": 0.017024816945195198 },
  { "languageId": "css", "confidence": 0.013620768673717976 },
  { "languageId": "go", "confidence": 0.012718110345304012 },
  { "languageId": "c", "confidence": 0.011547493748366833 },
  { "languageId": "lua", "confidence": 0.011429708451032639 },
  { "languageId": "cpp", "confidence": 0.010202286764979362 },
  { "languageId": "swift", "confidence": 0.010128483176231384 },
  { "languageId": "kt", "confidence": 0.008081216365098953 },
  { "languageId": "pm", "confidence": 0.007753847632557154 },
  { "languageId": "groovy", "confidence": 0.007391981780529022 },
  { "languageId": "scala", "confidence": 0.0069132656790316105 },
  { "languageId": "r", "confidence": 0.006373902782797813 },
  { "languageId": "ps1", "confidence": 0.004702022764831781 },
  { "languageId": "mm", "confidence": 0.004345177672803402 },
  { "languageId": "tex", "confidence": 0.004238464403897524 },
  { "languageId": "asm", "confidence": 0.0035753981210291386 },
  { "languageId": "php", "confidence": 0.0029875021427869797 },
  { "languageId": "cs", "confidence": 0.00282992678694427 },
  { "languageId": "erl", "confidence": 0.0026539231184870005 },
  { "languageId": "hs", "confidence": 0.0022999923676252365 },
  { "languageId": "java", "confidence": 0.0021398833487182856 },
  { "languageId": "json", "confidence": 0.0018522157333791256 },
  { "languageId": "jl", "confidence": 0.0016744869062677026 },
  { "languageId": "coffee", "confidence": 0.0014533938374370337 },
  { "languageId": "ml", "confidence": 0.0014339216286316514 },
  { "languageId": "prolog", "confidence": 0.0013837843434885144 },
  { "languageId": "md", "confidence": 0.0011162260780110955 },
  { "languageId": "rb", "confidence": 0.0010244469158351421 },
  { "languageId": "bat", "confidence": 0.0009783837012946606 },
  { "languageId": "ex", "confidence": 0.0009154175058938563 },
  { "languageId": "pas", "confidence": 0.0009110081009566784 },
  { "languageId": "xml", "confidence": 0.0008580578141845763 },
  { "languageId": "sh", "confidence": 0.0008576430263929069 },
  { "languageId": "py", "confidence": 0.0006855467217974365 },
  { "languageId": "csv", "confidence": 0.0006681767990812659 },
  { "languageId": "yaml", "confidence": 0.0006367963505908847 },
  { "languageId": "sql", "confidence": 0.0006355350487865508 },
  { "languageId": "vba", "confidence": 0.0005863389233127236 },
  { "languageId": "dm", "confidence": 0.0004887901013717055 },
  { "languageId": "matlab", "confidence": 0.0003887197526637465 },
  { "languageId": "v", "confidence": 0.000384387094527483 },
  { "languageId": "clj", "confidence": 0.0003443971218075603 },
  { "languageId": "f90", "confidence": 0.0002740618074312806 },
  { "languageId": "cmake", "confidence": 0.000268166622845456 },
  { "languageId": "ini", "confidence": 0.00018944506882689893 },
  { "languageId": "makefile", "confidence": 0.0001014301014947705 },
  { "languageId": "lisp", "confidence": 0.00006610684067709371 },
  { "languageId": "cbl", "confidence": 0.00004037651524413377 },
  { "languageId": "dockerfile", "confidence": 0.00002403824146313127 },
  { "languageId": "toml", "confidence": 0.000019977496776846237 }
]

Advanced Options

You can pass an optional object to GuessLang containing the following options:

  • minContentSize?: number - The minimum number of characters in a file to be considered for language detection. Defaults to 20.
  • maxContentSize?: number - The maximum number of characters that will be used in a file to be considered for language detection. Defaults to 100000.

For example:

const guessLang = new GuessLang({
  minContentSize: 0,
  maxContentSize: 1000,
});

Differences from vscode-languagedetection

The only notable difference is that this library includes the guesslang model as Base64 encoded string, allowing everything to be loaded from one single file. Meanwhile, vscode-languagedetection loads the model from files using fs.

Credits

About

A JavaScript library that uses machine learning to detect source code languages

Resources

License

Stars

Watchers

Forks