llm theoretical performance analysis tools and support params, flops, memory and latency analysis.
- 支持张量并行、
pipeline
并行推理模式。 - 支持
A100
、V100
、T4
等硬件以及主流 decoder-only 的自回归模型,可自行在配置文件中增加。 - 支持分析性能瓶颈,不同
layer
是memory bound
还是compute bound
,以及kv_cache
的性能瓶颈。 - 支持输出每层和整个模型的参数量、计算量,内存和
latency
。 - 推理时支持预填充和解码阶段分别计算内存和 latency、以及理论支持的最大
bs
等等。 - 支持设置计算效率、内存读取效率(不同推理框架可能不一样,这个设置好后,可推测输出实际值)。
- 推理性能理论分析结果的格式化输出。
使用方法,直接调用 llm_profiler/llm_profiler.py
文件中函数 llm_profile()
函数并输入相关参数即可。
def llm_profile(model_name="llama-13b",
gpu_name: str = "v100-sxm-32gb",
bytes_per_param: int = BYTES_FP16,
bs: int = 1,
seq_len: int = 522,
generate_len=1526,
ds_zero: int = 0,
dp_size: int = 1,
tp_size: int = 1,
pp_size: int = 1,
sp_size: int = 1,
use_kv_cache: bool = True,
layernorm_dtype_bytes: int = BYTES_FP16,
kv_cache_bytes: int = BYTES_FP16,
flops_efficiency: float = FLOPS_EFFICIENCY,
hbm_memory_efficiency: float = HBM_MEMORY_EFFICIENCY,
intra_node_memory_efficiency=INTRA_NODE_MEMORY_EFFICIENCY,
inter_node_memory_efficiency=INTER_NODE_MEMORY_EFFICIENCY,
mode: str = "inference",
) -> dict:
"""format print dicts of the total floating-point operations, MACs, parameters and latency of a llm.
Args:
model_name (str, optional): model name to query the pre-defined `model_configs.json`. Defaults to "llama-13b".
gpu_name (str, optional): gpu name to query the pre-defined `model_configs.json`. Defaults to "v100-sxm2-32gb".
bs (int, optional): _description_. Defaults to 1.
seq_len (int, optional): batch size per GPU.. Defaults to 522.
generate_len (int, optional): The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. Defaults to 1526.
ds_zero (int, optional): which DeepSpeed ZeRO stage to use.. Defaults to 0.
dp_size (int, optional): data parallelism size. Defaults to 1.
tp_size (int, optional): tensor parallelism size. Defaults to 1.
pp_size (int, optional): pipeline parallelism size. Defaults to 1.
sp_size (int, optional): sequence parallelism size. Defaults to 1.
use_kv_cache (bool, optional): Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding. Defaults to True.
layernorm_dtype_bytes (int, optional): number of bytes in the data type for the layernorm activations.. Defaults to BYTES_FP16.
kv_cache_bytes (int, optional): number of bytes in the data type for the kv_cache. Defaults to None.
flops_efficiency (float, optional): flops efficiency, ranging from 0 to 1. Defaults to None.
hbm_memory_efficiency (float, optional): GPU HBM memory efficiency, ranging from 0 to 1. Defaults to HBM_MEMORY_EFFICIENCY.
intra_node_memory_efficiency (_type_, optional): intra-node memory efficiency, ranging from 0 to 1.. Defaults to INTRA_NODE_MEMORY_EFFICIENCY.
inter_node_memory_efficiency (_type_, optional): inter-node memory efficiency, ranging from 0 to 1.. Defaults to INTER_NODE_MEMORY_EFFICIENCY.
mode (str, optional): model training or inference. Defaults to "inference".
Returns:
None: format print some summary dictionary of the inference analysis
"""
llama2-70
模型,tp_size = 8 和 bs = 20,输出示例信息如下所示:
-------------------------- LLM main infer config --------------------------
{ 'inference_config': { 'model_name': 'llama2-70b',
'bs': 20,
'seq_len': 1024,
'tp_size': 8,
'pp_size': 1,
'generate_len': 1024,
'use_kv_cache': True},
'gpu_config': { 'name': 'a100-sxm-40gb',
'memory_GPU_in_GB': '40 GB',
'gpu_hbm_bandwidth': '1555 GB/s',
'gpu_intra_node_bandwidth': '600 GB/s',
'gpu_fp16_TFLOPS': '312 TFLOPS'}}
-------------------------- LLM infer performance analysis --------------------------
{ 'model_params': '68.71 G',
'prefill_flops': '3243.71 T',
'decode_flops_per_step': '3.11 T',
'prefill_first_token_latency': '1.77 s',
'decode_per_token_latency': '14.58 ms',
'kv_cache_latency': '599.4 us',
'total_infer_latency': '16.69 s'}
---------------------------- LLM Params per_layer analysis ----------------------------
{ 'qkvo_proj': '150.99 M',
'mlp': '704.64 M',
'rmsnorm': '16.38 K',
'input_embedding': '262.14 M',
'output_embedding': '262.14 M'}
{'params_model': '68.71 G'}
---------------------------- LLM Prefill Flops per_layer analysis -----------------------------
{ 'attention_kernel': '687.7 G',
'qkvo_proj': '11.0 T',
'mlp': '28.86 T',
'rmsnorm': '2.68 G',
'positional_embedding': '335.54 M',
'input_embedding': '0'}
{'prefill flops_model': '3243.71 T'}
---------------------------- LLM Memory analysis -----------------------------
{ 'weight_memory_per_gpu': '17.18 GB',
'prefill_max_bs': 340,
'prefill_act_memory_per_gpu': '1.34 GB'}
{ 'decode_act_memory_per_gpu': '1.31 MB',
'kv_cache_memory_per_gpu': '1.68 GB',
'decode_memory_total': '18.86 GB',
'decode_max_bs': 271,
'max_batch_total_tokens': 538357}
-------------------------- LLM Latency analysis --------------------------
{ 'prefill_qkvo_proj': '391.56 ms',
'prefill_attn_kernel': '79.12 ms',
'prefill_mlp': '1.03 s',
'prefill_rmsnorm': '76.73 ms',
'prefill_tp_comm': '260.98 ms',
'prefill_kv_cache_rw': '599.4 us',
'prefill_latency': '1.77 s'}
{ 'decode_qkvo_proj': '2.18 ms',
'decode_attn_kernel': '2.42 us',
'decode_mlp': '10.09 ms',
'decode_rmsnorm': '80.54 us',
'decode_tp_comm': '640.0 us',
'decode_kv_cache_rw': '1.2 ms',
'kv_cache_latency': '599.4 us',
'decode_latency': '14.58 ms'}
llama2-70b 模型,A100-SXM40GB,tp_size = 8 和 bs = 20,prefill 阶段:
llama2-70b 模型,A100-SXM40GB,tp_size = 8 和 bs = 20, decode 阶段:
llama2-70b 模型,A100-SXM40GB,tp_size = 8 和 bs = 20,参数量统计分布:
llama2-70b 模型,A100-SXM40GB,tp_size = 8 和 bs = 20,prefill 阶段计算量统计分布:
llama2-70b 模型,A100-SXM40GB,tp_size = 8 和 bs = 20,prefill 阶段 latency 统计分布:
llama2-70b 模型,A100-SXM40GB,tp_size = 8 和 bs = 20,decode 阶段 latency 统计分布:
- 修复一些计算的错误
- 支持训练模型理论性能分析
- 支持量化