Skip to content

Commit

Permalink
q benchmark (#241)
Browse files Browse the repository at this point in the history
  • Loading branch information
harelba authored Sep 19, 2020
1 parent 865f591 commit 9b492b8
Show file tree
Hide file tree
Showing 18 changed files with 835 additions and 4 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,6 @@ packages
.idea/
dist/windows/
generated-site/
benchmark_data.tar.gz
_benchmark_data/
q.egg-info/
18 changes: 18 additions & 0 deletions VERSION_BUMP.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@

# Version bump
Currently, there are some manual steps needed in order to release a new version:

* Make sure that you're in a branch
* Change the version in the following three files: `bin/q.py`, `setup.py` and `do-manual-release.sh` and commit them to the branch
* perform merge into master of that branch
* add a tag of the release version
* `git push --tags origin master`
* create a release in github with the tag you've just created

Pushing to master will trigger a build/release, and will push the artifacts to the new release as assets.

The reason for this is related to limitations in the way that pyci uploads the binaries to github.

#

TBD - Continue with the flow of wrapping the artifacts with rpm/deb, copying the files to packages-for-q, and updating the web site.
2 changes: 1 addition & 1 deletion bin/q.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@

from collections import OrderedDict

q_version = '2.0.17'
q_version = '2.0.18'

__all__ = [ 'QTextAsData' ]

Expand Down
2 changes: 1 addition & 1 deletion do-manual-release.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

set -e

VERSION=2.0.17
VERSION=2.0.18

if [[ "$TRAVIS_BRANCH" != "master" ]]
then
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
six==1.11.0
flake8==3.6.0
setuptools<45.0.0
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

from setuptools import setup

q_version = '2.0.17'
q_version = '2.0.18'

setup(
name='q',
Expand Down
159 changes: 159 additions & 0 deletions test/BENCHMARK.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@


NOTE: *Please don't use or publish this benchmark data yet. See below for details*

# Overview
This just a preliminary benchmark, originally created for validating performance optimizations and suggestions from users, and analyzing q's move to python3. After writing it, I thought it might be interesting to test its speed against textql and octosql as well.

The results I'm getting are somewhat surprising, to the point of me questioning them a bit, so it would be great to validate the further before finalizing the benchmark results.

The most surprising results are as follows:
* python3 vs python2 - A huge improvement (for large files, execution times with python 3 are around 40% of the times for python 2)
* python3 vs textql (written in golang) - Seems that textql becomes slower than the python3 q version as the data sizes grows (both rows and columns)

I would love to validate these results by having other people run the benchmark as well and send me their results.

If you're interested, follow the instructions and run the benchmark on your machine. After the benchmark is finished, send me the final results file, along with some details about your hardware, and i'll add it to the spreadsheet. <[email protected]>

I've tried to make running the benchmark as seamless as possible, but there obviously might be errors/issues. Please contact me if you encounter any issue, or just open a ticket.

# Benchmark
This is an initial version of the benchmark, along with some results. The following is compared:
* q running on multiple python versions
* textql 2.0.3
* octosql v0.3.0

The specific python versions which are being tested are specified in `benchmark-config.sh`.

This is by no means a scientific benchmark, and it only focuses on the data loading time which is the only significant factor for comparison (e.g. the query itself is a very simple count query). Also, it does not try to provide any usability comparison between q and textql/octosql, an interesting topic on its own.

## Methodology
The idea was to compare the time sensitivity of row and column count.

* Row counts: 1,10,100,1000,10000,100000,1000000
* Column counts: 1,5,10,20,50,100
* Iterations for each combination: 10

File sizes:
* 1M rows by 100 columns - 976MB (~1GB) - Largest file
* 1M rows by 50 columns - 477MB

The benchmark executes simple `select count(*) from <file>` queries for each combination, calculating the mean and stddev of each set of iterations. The stddev is used in order to measure the validity of the results.

The graphs below only compare the means of the results, the standard deviations are written into the google sheet itself, and can be viewed there if needed.

Instructions on how to run the benchmark are at the bottom section of this document, after the results section.

## Hardware
OSX Catalina on a 15" Macbook Pro from Mid 2015, with 16GB of RAM, and an internal Flash Drive of 256GB.

## Results
(Results are automatically updated from the baseline tab in the google spreadsheet).

Detailed results below.

Summary:
* All python 3 versions (3.6/3.7/3.8) provide similar results across all scales.
* python 3.x provides significantly better results than python2. Improvement grows as the file size grows (20% improvement for small files, up to ~70% improvement for the largest file)
* textql seems to provide faster results than q (py3) for smaller files, up to around 30MB of data. As the size grows further, it becomes slower than q, up to 80% (74 seconds vs 41 seconds) for the largest file
* The larger the files, textql becomes slower than q-py3 (up to 80% more time than q for the largest file)
* octosql is significantly slower than both q and textql, even for small files with a low number of rows and columns

### Data for 1M rows

#### Run time durations for 1M rows and different column counts:
| rows | columns | File Size | python 2.7 | python 3.6 | python 3.7 | python 3.8 | textql | octosql |
|:-------: |:-------: |:---------: |:----------: |:----------: |:----------: |:----------: |:------: |:-------: |
| 1000000 | 1 | 17M | 5.15 | 4.24 | 4.08 | 3.98 | 2.90 | 49.95 |
| 1000000 | 5 | 37M | 10.68 | 5.37 | 5.26 | 5.14 | 5.88 | 54.69 |
| 1000000 | 10 | 89M | 17.56 | 7.25 | 7.15 | 7.01 | 9.69 | 65.32 |
| 1000000 | 20 | 192M | 30.28 | 10.96 | 10.78 | 10.64 | 17.34 | 83.94 |
| 1000000 | 50 | 477M | 71.56 | 21.98 | 21.59 | 21.70 | 38.57 | 158.26 |
| 1000000 | 100 | 986M | 131.86 | 41.71 | 40.82 | 41.02 | 74.62 | 289.58 |

#### Comparison between python 3.x and python 2 run times (1M rows):
(>100% is slower than q-py2, <100% is faster than q-py2)

| rows | columns | file size | q-py2 runtime | q-py3.6 vs q-py2 runtime | q-py3.7 vs q-py2 runtime | q-py3.8 vs q-py2 runtime |
|:-------: |:-------: |:---------: |:-------------: |:------------------------: |:------------------------: |:------------------------: |
| 1000000 | 1 | 17M | 100.00% | 82.34% | 79.34% | 77.36% |
| 1000000 | 5 | 37M | 100.00% | 50.25% | 49.22% | 48.08% |
| 1000000 | 10 | 89M | 100.00% | 41.30% | 40.69% | 39.93% |
| 1000000 | 20 | 192M | 100.00% | 36.18% | 35.59% | 35.14% |
| 1000000 | 50 | 477M | 100.00% | 30.71% | 30.17% | 30.32% |
| 1000000 | 100 | 986M | 100.00% | 31.63% | 30.96% | 31.11% |

#### textql and octosql comparison against q-py3 run time (1M rows):
(>100% is slower than q-py3, <100% is faster than q-py3)

| rows | columns | file size | avg q-py3 runtime | textql vs q-py3 runtime | octosql vs q-py3 runtime |
|:-------: |:-------: |:---------: |:-----------------: |:-----------------------: |:------------------------: |
| 1000000 | 1 | 17M | 100.00% | 70.67% | 1217.76% |
| 1000000 | 5 | 37M | 100.00% | 111.86% | 1040.70% |
| 1000000 | 10 | 89M | 100.00% | 135.80% | 915.28% |
| 1000000 | 20 | 192M | 100.00% | 160.67% | 777.92% |
| 1000000 | 50 | 477M | 100.00% | 177.26% | 727.40% |
| 1000000 | 100 | 986M | 100.00% | 181.19% | 703.15% |

### Sensitivity to column count
Based on a the largest file size of 1,000,000 rows.

![Sensitivity to column count](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=1585602598&format=image)

### Sensitivity to line count (per column count)

#### 1 Column Table
![1 column table](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=1119350798&format=image)

#### 5 Column Table
![5 column table](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=599223098&format=image)

#### 10 Column Table
![10 column table](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=82695414&format=image)

#### 20 Column Table
![20 column table](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=1573199483&format=image)

#### 50 Column Table
![50 column table](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=448568670&format=image)

#### 100 Column Table
![100 column table](https://docs.google.com/spreadsheets/d/e/2PACX-1vQy9Zm4I322Tdf5uoiFFJx6Oi3Z4AMq7He3fUUtsEQVQIdTGfWgjxFD6k8PAy9wBjvFkqaG26oBgNTP/pubchart?oid=2101488258&format=image)

## Running the benchmark
Please note that the initial run generates large files, so you'd need more than 3GB of free space available. All the generated files reside in the `_benchmark_data/` folder.

Part of the preparation flow will download the benchmark data as needed.

### Preparations
* Prerequisites:
* pyenv installed
* pyenv-virtualenv installed
* [`textql`](https://github.com/dinedal/textql#install)
* [`octosql`](https://github.com/cube2222/octosql#installation)

Run `./prepare-benchmark-env`

### Execution
Run `./run-benchmark <benchmark-id>`.

Benchmark output files will be written to `./benchmark-results/<q-executable>/<benchmark-id>/`.

* `benchmark-id` is the id you wanna give the benchmark.
* `q-executable` is the name of the q executable being used for the benchmark. If none has been provided through Q_EXECUTABLE, then the value will be the last commit hash. Note that there is no checking of whether the working tree is clean.

The summary of benchmark will be written to `./benchmark-results/<benchmark-id>/summary.benchmark-results``

By default, the benchmark will use the source python files inside the project. If you wanna run it on one of the standalone binary executable, the set Q_EXECUTABLE to the full path of the q binary.

For anyone helping with running the benchmark, don't use this parameter for now, just test against a clean checkout of the code using `./run-benchmark <benchmark-id>`.

## Benchmark Development info
### Running against the standalone binary
* `./run-benchmark` can accept a second parameter with the q executable. If it gets this parameter, it will use this path for running q. This provides a way to test the standalone q binaries in the new packaging format. When this parameter does not exist, the benchmark is executed directly from the source code.

### Updating the benchmark markdown document file
The results should reside in the following [google sheet](https://docs.google.com/spreadsheets/d/1Ljr8YIJwUQ5F4wr6ATga5Aajpu1CvQp1pe52KGrLkbY/edit?usp=sharing).

add a new tab to the google sheet, and paste the content of `summary.benchmark-results` to the new sheet.

3 changes: 3 additions & 0 deletions test/benchmark-config.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
#!/bin/bash

BENCHMARK_PYTHON_VERSIONS=(2.7.18 3.6.4 3.7.9 3.8.5)
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
lines columns octosql_v0.3.0_mean octosql_v0.3.0_stddev
1 1 0.582091641426 0.0235290239617
10 1 0.596219730377 0.0320124029461
100 1 0.575977492332 0.0199296245316
1000 1 0.56785056591 0.00846389017466
10000 1 1.1466334343 0.00760108698846
100000 1 5.49565172195 0.131791932977
1000000 1 49.9513648033 0.443430523063
lines columns octosql_v0.3.0_mean octosql_v0.3.0_stddev
1 5 0.582160949707 0.0274409391571
10 5 0.57046456337 0.0199413000359
100 5 0.585747480392 0.0372543971623
1000 5 0.572268772125 0.00384300349763
10000 5 1.15530762672 0.0117990775856
100000 5 6.10629923344 0.146711842919
1000000 5 54.6851765394 0.315486399525
lines columns octosql_v0.3.0_mean octosql_v0.3.0_stddev
1 10 0.586222410202 0.0232479065914
10 10 0.59000480175 0.0186508192447
100 10 0.581873703003 0.0331332482772
1000 10 0.569027900696 0.0103675493106
10000 10 1.40067322254 0.00583352224401
100000 10 7.30705575943 0.0165839217599
1000000 10 65.3242264032 0.512552576414
lines columns octosql_v0.3.0_mean octosql_v0.3.0_stddev
1 20 0.571048212051 0.0166919396871
10 20 0.594776701927 0.0368900941023
100 20 0.561370825768 0.00907051791451
1000 20 0.577527880669 0.00983965108957
10000 20 1.90710241795 0.00757011452155
100000 20 9.8267291069 0.127844155326
1000000 20 83.9448960066 0.46121344046
lines columns octosql_v0.3.0_mean octosql_v0.3.0_stddev
1 50 0.572030115128 0.0253648479103
10 50 0.56993534565 0.0230474303306
100 50 0.563336873055 0.00964411866903
1000 50 0.826378440857 0.00941629472813
10000 50 3.27872717381 0.126592845956
100000 50 17.890055728 0.116794666005
1000000 50 158.262442636 0.826290454446
lines columns octosql_v0.3.0_mean octosql_v0.3.0_stddev
1 100 0.569358110428 0.0279801762531
10 100 0.580981063843 0.0272341107532
100 100 0.559471726418 0.00668155858429
1000 100 1.08161640167 0.00698594638512
10000 100 5.67823712826 0.0123398407167
100000 100 32.2797194242 0.315508270241
1000000 100 289.582628798 0.929455236817
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
lines columns q-benchmark-2.7.18_mean q-benchmark-2.7.18_stddev
1 1 0.106449890137 0.002010027753
10 1 0.106737875938 0.00224112203891
100 1 0.107839012146 0.00102954061006
1000 1 0.113026666641 0.00147361890226
10000 1 0.160376381874 0.00569766179806
100000 1 0.608236479759 0.00604026519608
1000000 1 5.14807910919 0.0584474028762
lines columns q-benchmark-2.7.18_mean q-benchmark-2.7.18_stddev
1 5 0.106719517708 0.00236752032369
10 5 0.107823801041 0.00238873169438
100 5 0.109785079956 0.0013047675259
1000 5 0.120395207405 0.00207224422629
10000 5 0.21783041954 0.00522254475716
100000 5 1.17115747929 0.0221394865225
1000000 5 10.6830974817 0.339822977934
lines columns q-benchmark-2.7.18_mean q-benchmark-2.7.18_stddev
1 10 0.104981088638 0.00166552032929
10 10 0.108320140839 0.00204034349199
100 10 0.112528729439 0.00168376477305
1000 10 0.13019015789 0.00253773120965
10000 10 0.284891676903 0.00384009140782
100000 10 1.84725661278 0.00860738744089
1000000 10 17.5610994339 0.228322442172
lines columns q-benchmark-2.7.18_mean q-benchmark-2.7.18_stddev
1 20 0.106477689743 0.00254429925697
10 20 0.108580899239 0.00173704653824
100 20 0.118750286102 0.00247623639866
1000 20 0.146431708336 0.00249685551944
10000 20 0.419492387772 0.00248210434668
100000 20 3.15847921371 0.0550301268026
1000000 20 30.279082489 0.124978814506
lines columns q-benchmark-2.7.18_mean q-benchmark-2.7.18_stddev
1 50 0.105411934853 0.00171651054128
10 50 0.109102797508 0.00111620290512
100 50 0.135682177544 0.00196166766665
1000 50 0.198261427879 0.00396172489054
10000 50 0.821499919891 0.0111642692132
100000 50 7.05980975628 0.121182371277
1000000 50 71.5645889759 5.02009516291
lines columns q-benchmark-2.7.18_mean q-benchmark-2.7.18_stddev
1 100 0.10662381649 0.00193146624495
10 100 0.110662698746 0.00171461379583
100 100 0.163547992706 0.00166570196628
1000 100 0.280023741722 0.00337543024145
10000 100 1.46053376198 0.0221691284465
100000 100 13.2369835854 0.309375896258
1000000 100 131.864977288 1.22415449691
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
lines columns q-benchmark-3.6.4_mean q-benchmark-3.6.4_stddev
1 1 0.10342762470245362 0.0017673875851759295
10 1 0.10239293575286865 0.0012505611685910795
100 1 0.10317318439483643 0.0010581783881541751
1000 1 0.10687050819396973 0.0014050135772919004
10000 1 0.1447664737701416 0.001841256227287192
100000 1 0.5162809371948243 0.006962985088492867
1000000 1 4.238853335380554 0.04834401143632507
lines columns q-benchmark-3.6.4_mean q-benchmark-3.6.4_stddev
1 5 0.10211825370788574 0.0022568191323651568
10 5 0.1025341272354126 0.0016446470901070106
100 5 0.1053577184677124 0.0015298114223855884
1000 5 0.10980842113494874 0.002536098780902228
10000 5 0.1590113162994385 0.003123074098301634
100000 5 0.6348223447799682 0.0082691507829872
1000000 5 5.368562030792236 0.11628913334105236
lines columns q-benchmark-3.6.4_mean q-benchmark-3.6.4_stddev
1 10 0.10251858234405517 0.0015963869535345293
10 10 0.10278875827789306 0.0009920577082124496
100 10 0.10715732574462891 0.002033320000941064
1000 10 0.11389360427856446 0.0023603847702423973
10000 10 0.17806434631347656 0.001114054252191835
100000 10 0.8252989768981933 0.0037080843359275904
1000000 10 7.252838873863221 0.029052130546213153
lines columns q-benchmark-3.6.4_mean q-benchmark-3.6.4_stddev
1 20 0.10367965698242188 0.003661761341842434
10 20 0.10489590167999267 0.001977141196109372
100 20 0.11108210086822509 0.0014801173497056886
1000 20 0.12110791206359864 0.001648524669420912
10000 20 0.2178968906402588 0.0019298316207276716
100000 20 1.1962245225906372 0.010541407803235559
1000000 20 10.956057572364807 0.12677108174061705
lines columns q-benchmark-3.6.4_mean q-benchmark-3.6.4_stddev
1 50 0.10458300113677979 0.0016367630302744722
10 50 0.10616152286529541 0.002345135740908088
100 50 0.12375867366790771 0.00238414904864133
1000 50 0.14462883472442628 0.0022428030896492978
10000 50 0.34488487243652344 0.004867441221052092
100000 50 2.3394312858581543 0.02263239858944125
1000000 50 21.979821610450745 0.09080404939303836
lines columns q-benchmark-3.6.4_mean q-benchmark-3.6.4_stddev
1 100 0.10372309684753418 0.0010299126833031144
10 100 0.10784556865692138 0.0016557634029464607
100 100 0.14526791572570802 0.0028194506905186724
1000 100 0.18315494060516357 0.0023585311962114673
10000 100 0.5586131334304809 0.004808492789681402
100000 100 4.287398314476013 0.00957500108409644
1000000 100 41.706851434707644 0.4161526076289425
Loading

0 comments on commit 9b492b8

Please sign in to comment.