Skip to content

A simple and readable neural machine translation system

License

Notifications You must be signed in to change notification settings

hannlp/SimpleNMT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SimpleNMT

A simple and readable Neural Machine Translation system

1 background

  • The process of automatic translation of natural language by a computer is called Machine Translation (MT).
  • Neural Machine Translation (NMT) directly uses the Encoder-Decoder framework to perform end-to-end mapping of Distributed Representation language, which has the advantages of unified model structure and high translation quality, and has become the mainstream of the times.
  • The development of machine translation is mainly attributed to the promotion of open source systems and evaluation competitions. There are many excellent neural machine translation systems (fairseq, OpenNMT, Tensor2Tensor, etc.), but these open source systems have the disadvantages of complex implementation, too much redundant code, and difficult for beginners to read.

So, I am committed to building a Neural Machine Translation system that is easy to read, use, and friendly to beginners. (This is my graduation project ^ ^)

2 Quick Start

2.1 Download

git clone https://github.com/hannlp/SimpleNMT
cd SimpleNMT/simplenmt
pip install -r ../requirements.txt

2.2 Train your model

python train.py -data_path .. -save_path ..

use python train.py -h for more helps:

usage: train.py [-h] [-src SRC] [-tgt TGT] [-data_path DATA_PATH]
                [-save_path SAVE_PATH] [-batch_size BATCH_SIZE]
                [-max_seq_len MAX_SEQ_LEN] [-n_epochs N_EPOCHS]
                [-log_interval LOG_INTERVAL]
                [-keep_last_ckpts KEEP_LAST_CKPTS] [-optim OPTIM]
                [-model MODEL] [-d_model D_MODEL] [-n_layers N_LAYERS]
                [-share_vocab] [-p_drop P_DROP] [-lr LR] [-lr_scale LR_SCALE]
                [-betas BETAS [BETAS ...]] [-n_head N_HEAD]
                [-label_smoothing LABEL_SMOOTHING]
                [-warmup_steps WARMUP_STEPS] [-bidirectional]
                [-attn_type ATTN_TYPE] [-rnn_type RNN_TYPE]

2.3 Use your model to translate

python translate.py -data_path .. -save_path ..

use python translate.py -h for more helps:

usage: translate.py [-h] [-src SRC] [-tgt TGT] [-batch_size BATCH_SIZE]
                    [-data_path DATA_PATH] [-save_path SAVE_PATH]
                    [-ckpt_suffix CKPT_SUFFIX] [-max_seq_len MAX_SEQ_LEN]
                    [-generate] [-quiet] [-beam_size BEAM_SIZE]
                    [-length_penalty LENGTH_PENALTY]

3 Example

3.1 Train

This is a real example of using SimpleNMT to train a Chinese-English translation model. My parallel corpus is placed in /content/drive/MyDrive/Datasets/v15news/, called train.zh, train.en, valid.zh and valid.enrespectively. About the preprocessing method of parallel corpus, see this blog.

python train.py -src zh -tgt en -warmup_steps 8000 -data_path /content/drive/MyDrive/Datasets/v15news -save_path /content

This is the training process:

21-05-02 08:39:58 | Loading train and valid data from '/content/drive/MyDrive/Datasets/v15news/train', '/content/drive/MyDrive/Datasets/v15news/valid', suffix:('.zh', '.en') ...
21-05-02 08:40:05 | Building src and tgt vocabs ...
21-05-02 08:40:08 | Vocab size | SRC(zh): 37,143 types, TGT(en): 30,767 types
21-05-02 08:40:09 | The dataloader has saved at '/content/zh-en.dl'
21-05-02 08:40:09 | Namespace(attn_type='general', batch_size=4096, betas=(0.9, 0.98), bidirectional=False, d_model=512, data_path='/content/drive/MyDrive/Datasets/v15news', keep_last_ckpts=5, label_smoothing=0.1, log_interval=100, lr=0.001, lr_scale=1.0, max_seq_len=2048, model='Transformer', n_epochs=40, n_head=8, n_layers=6, n_src_words=37143, n_tgt_words=30767, optim='noam', p_drop=0.1, rnn_type='gru', save_path='/content', share_vocab=False, src='zh', src_pdx=1, tgt='en', tgt_pdx=1, use_cuda=True, warmup_steps=8000)
21-05-02 08:40:17 | Params count | encoder: 37,932,544, decoder: 40,976,896, others: 15,783,471, total: 94,692,911
21-05-02 08:40:17 | Transformer(
  (encoder): Encoder(
    (dropout): Dropout(p=0.1, inplace=False)
    (input_embedding): Embedding(37143, 512, padding_idx=1)
    (positional_encode): PositionalEncode()
    (layers): ModuleList(
      (0): EncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (sublayer1_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (self_attn): MultiHeadAttention(
          (w_q): Linear(in_features=512, out_features=512, bias=True)
          (w_k): Linear(in_features=512, out_features=512, bias=True)
          (w_v): Linear(in_features=512, out_features=512, bias=True)
          (w_out): Linear(in_features=512, out_features=512, bias=True)
        )
        (sublayer2_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (pos_wise_ffn): FeedForwardNetwork(
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
        )
      )
      ...
      (5): EncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (sublayer1_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (self_attn): MultiHeadAttention(
          (w_q): Linear(in_features=512, out_features=512, bias=True)
          (w_k): Linear(in_features=512, out_features=512, bias=True)
          (w_v): Linear(in_features=512, out_features=512, bias=True)
          (w_out): Linear(in_features=512, out_features=512, bias=True)
        )
        (sublayer2_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (pos_wise_ffn): FeedForwardNetwork(
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
        )
      )
    )
    (layer_norm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  )
  (decoder): Decoder(
    (dropout): Dropout(p=0.1, inplace=False)
    (input_embedding): Embedding(30767, 512, padding_idx=1)
    (positional_encode): PositionalEncode()
    (layers): ModuleList(
      (0): DecoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (sublayer1_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (masked_self_attn): MultiHeadAttention(
          (w_q): Linear(in_features=512, out_features=512, bias=True)
          (w_k): Linear(in_features=512, out_features=512, bias=True)
          (w_v): Linear(in_features=512, out_features=512, bias=True)
          (w_out): Linear(in_features=512, out_features=512, bias=True)
        )
        (sublayer2_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (context_attn): MultiHeadAttention(
          (w_q): Linear(in_features=512, out_features=512, bias=True)
          (w_k): Linear(in_features=512, out_features=512, bias=True)
          (w_v): Linear(in_features=512, out_features=512, bias=True)
          (w_out): Linear(in_features=512, out_features=512, bias=True)
        )
        (sublayer3_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (pos_wise_ffn): FeedForwardNetwork(
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
        )
      )
      ...
      (5): DecoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (sublayer1_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (masked_self_attn): MultiHeadAttention(
          (w_q): Linear(in_features=512, out_features=512, bias=True)
          (w_k): Linear(in_features=512, out_features=512, bias=True)
          (w_v): Linear(in_features=512, out_features=512, bias=True)
          (w_out): Linear(in_features=512, out_features=512, bias=True)
        )
        (sublayer2_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (context_attn): MultiHeadAttention(
          (w_q): Linear(in_features=512, out_features=512, bias=True)
          (w_k): Linear(in_features=512, out_features=512, bias=True)
          (w_v): Linear(in_features=512, out_features=512, bias=True)
          (w_out): Linear(in_features=512, out_features=512, bias=True)
        )
        (sublayer3_prenorm): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
        (pos_wise_ffn): FeedForwardNetwork(
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
        )
      )
    )
  )
  (out_vocab_proj): Linear(in_features=512, out_features=30767, bias=True)
)
21-05-02 08:40:55 | Epoch: 1, batch: [100/2140], lr: 0.000006, loss: 8.68375, ppl: 4574.50, acc: 5.90%, n_steps: 100
21-05-02 08:41:26 | Epoch: 1, batch: [200/2140], lr: 0.000012, loss: 7.62761, ppl: 1316.82, acc: 6.84%, n_steps: 200
21-05-02 08:41:57 | Epoch: 1, batch: [300/2140], lr: 0.000019, loss: 7.03944, ppl: 664.28, acc: 9.41%, n_steps: 300
21-05-02 08:42:28 | Epoch: 1, batch: [400/2140], lr: 0.000025, loss: 7.21272, ppl: 819.51, acc: 10.30%, n_steps: 400
21-05-02 08:42:59 | Epoch: 1, batch: [500/2140], lr: 0.000031, loss: 7.09707, ppl: 718.99, acc: 14.52%, n_steps: 500
21-05-02 08:43:31 | Epoch: 1, batch: [600/2140], lr: 0.000037, loss: 7.06151, ppl: 686.29, acc: 16.00%, n_steps: 600
21-05-02 08:44:02 | Epoch: 1, batch: [700/2140], lr: 0.000043, loss: 6.83975, ppl: 522.45, acc: 17.74%, n_steps: 700
21-05-02 08:44:33 | Epoch: 1, batch: [800/2140], lr: 0.000049, loss: 6.90300, ppl: 573.03, acc: 18.18%, n_steps: 800
21-05-02 08:45:05 | Epoch: 1, batch: [900/2140], lr: 0.000056, loss: 6.76517, ppl: 494.24, acc: 16.98%, n_steps: 900
21-05-02 08:45:36 | Epoch: 1, batch: [1000/2140], lr: 0.000062, loss: 6.63938, ppl: 427.50, acc: 19.78%, n_steps: 1000
21-05-02 08:46:07 | Epoch: 1, batch: [1100/2140], lr: 0.000068, loss: 5.75466, ppl: 154.18, acc: 28.80%, n_steps: 1100
21-05-02 08:46:38 | Epoch: 1, batch: [1200/2140], lr: 0.000074, loss: 6.07888, ppl: 218.73, acc: 23.01%, n_steps: 1200
21-05-02 08:47:09 | Epoch: 1, batch: [1300/2140], lr: 0.000080, loss: 5.83510, ppl: 169.73, acc: 26.62%, n_steps: 1300
21-05-02 08:47:40 | Epoch: 1, batch: [1400/2140], lr: 0.000086, loss: 6.06895, ppl: 222.28, acc: 23.06%, n_steps: 1400
21-05-02 08:48:12 | Epoch: 1, batch: [1500/2140], lr: 0.000093, loss: 5.63430, ppl: 133.63, acc: 27.65%, n_steps: 1500
21-05-02 08:48:43 | Epoch: 1, batch: [1600/2140], lr: 0.000099, loss: 5.57024, ppl: 121.16, acc: 28.52%, n_steps: 1600
21-05-02 08:49:14 | Epoch: 1, batch: [1700/2140], lr: 0.000105, loss: 6.09650, ppl: 224.54, acc: 23.51%, n_steps: 1700
21-05-02 08:49:45 | Epoch: 1, batch: [1800/2140], lr: 0.000111, loss: 5.45549, ppl: 108.25, acc: 30.28%, n_steps: 1800
21-05-02 08:50:17 | Epoch: 1, batch: [1900/2140], lr: 0.000117, loss: 5.84876, ppl: 170.74, acc: 25.03%, n_steps: 1900
21-05-02 08:50:48 | Epoch: 1, batch: [2000/2140], lr: 0.000124, loss: 5.56161, ppl: 124.00, acc: 29.38%, n_steps: 2000
21-05-02 08:51:19 | Epoch: 1, batch: [2100/2140], lr: 0.000130, loss: 5.67892, ppl: 140.96, acc: 26.16%, n_steps: 2100
21-05-02 08:51:40 | Valid | Epoch: 1, loss: 5.27728, ppl: 86.11, acc: 31.02%, elapsed: 11.4 min
21-05-02 08:52:25 | Epoch: 2, batch: [100/2140], lr: 0.000138, loss: 5.36792, ppl: 97.01, acc: 29.43%, n_steps: 2240
21-05-02 08:52:56 | Epoch: 2, batch: [200/2140], lr: 0.000145, loss: 5.36300, ppl: 97.59, acc: 29.87%, n_steps: 2340
...
21-05-02 09:02:17 | Epoch: 2, batch: [2000/2140], lr: 0.000256, loss: 4.31736, ppl: 29.59, acc: 42.65%, n_steps: 4140
21-05-02 09:02:48 | Epoch: 2, batch: [2100/2140], lr: 0.000262, loss: 4.94857, ppl: 58.46, acc: 34.57%, n_steps: 4240
21-05-02 09:03:08 | Valid | Epoch: 2, loss: 4.06680, ppl: 21.39, acc: 46.92%, elapsed: 11.4 min
21-05-02 09:03:52 | Epoch: 3, batch: [100/2140], lr: 0.000271, loss: 4.03694, ppl: 21.26, acc: 45.57%, n_steps: 4380
21-05-02 09:04:23 | Epoch: 3, batch: [200/2140], lr: 0.000277, loss: 3.72947, ppl: 15.09, acc: 51.72%, n_steps: 4480
...
21-05-02 09:13:44 | Epoch: 3, batch: [2000/2140], lr: 0.000388, loss: 3.59666, ppl: 12.80, acc: 53.22%, n_steps: 6280
21-05-02 09:14:16 | Epoch: 3, batch: [2100/2140], lr: 0.000394, loss: 3.45400, ppl: 10.89, acc: 55.09%, n_steps: 6380
21-05-02 09:14:36 | Valid | Epoch: 3, loss: 3.65300, ppl: 13.07, acc: 53.00%, elapsed: 11.4 min
21-05-02 09:15:21 | Epoch: 4, batch: [100/2140], lr: 0.000403, loss: 3.26954, ppl: 8.66, acc: 58.38%, n_steps: 6520
21-05-02 09:15:52 | Epoch: 4, batch: [200/2140], lr: 0.000409, loss: 3.51244, ppl: 11.62, acc: 53.65%, n_steps: 6620
...
21-05-02 09:25:14 | Epoch: 4, batch: [2000/2140], lr: 0.000482, loss: 3.74748, ppl: 15.40, acc: 52.17%, n_steps: 8420
21-05-02 09:25:45 | Epoch: 4, batch: [2100/2140], lr: 0.000479, loss: 3.82970, ppl: 16.94, acc: 49.77%, n_steps: 8520
21-05-02 09:26:06 | Valid | Epoch: 4, loss: 3.45292, ppl: 10.80, acc: 55.95%, elapsed: 11.4 min
21-05-02 09:26:50 | Epoch: 5, batch: [100/2140], lr: 0.000475, loss: 2.97675, ppl: 6.41, acc: 62.10%, n_steps: 8660
21-05-02 09:27:21 | Epoch: 5, batch: [200/2140], lr: 0.000472, loss: 2.93373, ppl: 6.08, acc: 64.58%, n_steps: 8760
...
21-05-02 09:36:45 | Epoch: 5, batch: [2000/2140], lr: 0.000430, loss: 3.11882, ppl: 7.47, acc: 59.97%, n_steps: 10560
21-05-02 09:37:16 | Epoch: 5, batch: [2100/2140], lr: 0.000428, loss: 3.13934, ppl: 7.59, acc: 59.95%, n_steps: 10660
21-05-02 09:37:36 | Valid | Epoch: 5, loss: 3.29597, ppl: 9.07, acc: 58.56%, elapsed: 11.4 min
21-05-02 09:38:20 | Epoch: 6, batch: [100/2140], lr: 0.000425, loss: 3.07922, ppl: 7.10, acc: 61.38%, n_steps: 10800
21-05-02 09:38:51 | Epoch: 6, batch: [200/2140], lr: 0.000423, loss: 2.91873, ppl: 5.87, acc: 63.37%, n_steps: 10900
...
21-05-02 09:48:13 | Epoch: 6, batch: [2000/2140], lr: 0.000392, loss: 2.95715, ppl: 6.30, acc: 63.82%, n_steps: 12700
21-05-02 09:48:45 | Epoch: 6, batch: [2100/2140], lr: 0.000391, loss: 3.03277, ppl: 6.73, acc: 61.75%, n_steps: 12800
21-05-02 09:49:05 | Valid | Epoch: 6, loss: 3.22096, ppl: 8.22, acc: 59.79%, elapsed: 11.4 min
21-05-02 09:49:50 | Epoch: 7, batch: [100/2140], lr: 0.000389, loss: 2.75536, ppl: 5.01, acc: 67.36%, n_steps: 12940
21-05-02 09:50:21 | Epoch: 7, batch: [200/2140], lr: 0.000387, loss: 3.21883, ppl: 8.28, acc: 60.00%, n_steps: 13040
...
21-05-02 09:59:43 | Epoch: 7, batch: [2000/2140], lr: 0.000363, loss: 2.89408, ppl: 5.83, acc: 65.01%, n_steps: 14840
21-05-02 10:00:14 | Epoch: 7, batch: [2100/2140], lr: 0.000362, loss: 3.30365, ppl: 9.40, acc: 56.28%, n_steps: 14940
21-05-02 10:00:35 | Valid | Epoch: 7, loss: 3.17850, ppl: 7.80, acc: 60.79%, elapsed: 11.4 min
21-05-02 10:01:19 | Epoch: 8, batch: [100/2140], lr: 0.000360, loss: 2.66141, ppl: 4.47, acc: 68.30%, n_steps: 15080
21-05-02 10:01:50 | Epoch: 8, batch: [200/2140], lr: 0.000359, loss: 2.65836, ppl: 4.44, acc: 68.47%, n_steps: 15180
...
21-05-02 10:11:12 | Epoch: 8, batch: [2000/2140], lr: 0.000339, loss: 3.06003, ppl: 7.08, acc: 61.69%, n_steps: 16980
21-05-02 10:11:43 | Epoch: 8, batch: [2100/2140], lr: 0.000338, loss: 2.93119, ppl: 6.05, acc: 64.74%, n_steps: 17080
21-05-02 10:12:04 | Valid | Epoch: 8, loss: 3.16045, ppl: 7.71, acc: 61.08%, elapsed: 11.4 min
21-05-02 10:12:48 | Epoch: 9, batch: [100/2140], lr: 0.000337, loss: 2.61907, ppl: 4.27, acc: 69.40%, n_steps: 17220
21-05-02 10:13:19 | Epoch: 9, batch: [200/2140], lr: 0.000336, loss: 2.56966, ppl: 3.97, acc: 70.58%, n_steps: 17320
21-05-02 10:13:50 | Epoch: 9, batch: [300/2140], lr: 0.000335, loss: 2.72842, ppl: 4.75, acc: 68.06%, n_steps: 17420
...
21-05-02 10:22:40 | Epoch: 9, batch: [2000/2140], lr: 0.000320, loss: 2.73787, ppl: 4.88, acc: 67.31%, n_steps: 19120
21-05-02 10:23:12 | Epoch: 9, batch: [2100/2140], lr: 0.000319, loss: 2.73082, ppl: 4.83, acc: 67.69%, n_steps: 19220
21-05-02 10:23:32 | Valid | Epoch: 9, loss: 3.17937, ppl: 7.71, acc: 61.20%, elapsed: 11.4 min
21-05-02 10:24:17 | Epoch: 10, batch: [100/2140], lr: 0.000318, loss: 2.64270, ppl: 4.31, acc: 68.17%, n_steps: 19360
21-05-02 10:24:49 | Epoch: 10, batch: [200/2140], lr: 0.000317, loss: 2.48681, ppl: 3.65, acc: 72.20%, n_steps: 19460
...
21-05-02 10:34:10 | Epoch: 10, batch: [2000/2140], lr: 0.000303, loss: 2.54778, ppl: 3.93, acc: 71.23%, n_steps: 21260
21-05-02 10:34:41 | Epoch: 10, batch: [2100/2140], lr: 0.000302, loss: 2.76253, ppl: 5.02, acc: 68.03%, n_steps: 21360
21-05-02 10:35:02 | Valid | Epoch: 10, loss: 3.16470, ppl: 7.71, acc: 61.64%, elapsed: 11.4 min
21-05-02 10:35:46 | Epoch: 11, batch: [100/2140], lr: 0.000301, loss: 2.40264, ppl: 3.30, acc: 74.37%, n_steps: 21500
21-05-02 10:36:17 | Epoch: 11, batch: [200/2140], lr: 0.000301, loss: 2.45678, ppl: 3.50, acc: 74.19%, n_steps: 21600
...
21-05-02 10:45:38 | Epoch: 11, batch: [2000/2140], lr: 0.000289, loss: 2.67876, ppl: 4.56, acc: 68.56%, n_steps: 23400
21-05-02 10:46:09 | Epoch: 11, batch: [2100/2140], lr: 0.000288, loss: 2.53057, ppl: 3.86, acc: 71.24%, n_steps: 23500
21-05-02 10:46:30 | Valid | Epoch: 11, loss: 3.17310, ppl: 7.79, acc: 61.70%, elapsed: 11.4 min
21-05-02 10:47:13 | Epoch: 12, batch: [100/2140], lr: 0.000287, loss: 2.31367, ppl: 2.99, acc: 75.61%, n_steps: 23640
21-05-02 10:47:44 | Epoch: 12, batch: [200/2140], lr: 0.000287, loss: 2.30427, ppl: 2.98, acc: 76.15%, n_steps: 23740
21-05-02 10:48:16 | Epoch: 12, batch: [300/2140], lr: 0.000286, loss: 2.34651, ppl: 3.07, acc: 76.04%, n_steps: 23840
21-05-02 10:48:47 | Epoch: 12, batch: [400/2140], lr: 0.000286, loss: 2.43701, ppl: 3.40, acc: 73.67%, n_steps: 23940
21-05-02 10:49:18 | Epoch: 12, batch: [500/2140], lr: 0.000285, loss: 2.47633, ppl: 3.55, acc: 71.92%, n_steps: 24040
21-05-02 10:49:49 | Epoch: 12, batch: [600/2140], lr: 0.000284, loss: 2.56293, ppl: 3.95, acc: 71.05%, n_steps: 24140
21-05-02 10:50:20 | Epoch: 12, batch: [700/2140], lr: 0.000284, loss: 2.44471, ppl: 3.43, acc: 73.47%, n_steps: 24240
21-05-02 10:50:51 | Epoch: 12, batch: [800/2140], lr: 0.000283, loss: 2.41029, ppl: 3.33, acc: 74.38%, n_steps: 24340
21-05-02 10:51:23 | Epoch: 12, batch: [900/2140], lr: 0.000283, loss: 2.45736, ppl: 3.52, acc: 72.67%, n_steps: 24440
21-05-02 10:51:54 | Epoch: 12, batch: [1000/2140], lr: 0.000282, loss: 2.51822, ppl: 3.78, acc: 72.50%, n_steps: 24540
21-05-02 10:52:25 | Epoch: 12, batch: [1100/2140], lr: 0.000282, loss: 2.47280, ppl: 3.54, acc: 72.88%, n_steps: 24640
21-05-02 10:52:56 | Epoch: 12, batch: [1200/2140], lr: 0.000281, loss: 2.47236, ppl: 3.57, acc: 72.93%, n_steps: 24740
21-05-02 10:53:28 | Epoch: 12, batch: [1300/2140], lr: 0.000280, loss: 2.38675, ppl: 3.20, acc: 74.37%, n_steps: 24840
21-05-02 10:53:59 | Epoch: 12, batch: [1400/2140], lr: 0.000280, loss: 2.44812, ppl: 3.54, acc: 72.66%, n_steps: 24940
21-05-02 10:54:30 | Epoch: 12, batch: [1500/2140], lr: 0.000279, loss: 2.50485, ppl: 3.73, acc: 71.41%, n_steps: 25040
21-05-02 10:55:01 | Epoch: 12, batch: [1600/2140], lr: 0.000279, loss: 3.02722, ppl: 6.81, acc: 63.36%, n_steps: 25140
21-05-02 10:55:32 | Epoch: 12, batch: [1700/2140], lr: 0.000278, loss: 2.58520, ppl: 4.11, acc: 69.30%, n_steps: 25240
21-05-02 10:56:03 | Epoch: 12, batch: [1800/2140], lr: 0.000278, loss: 3.25484, ppl: 8.77, acc: 60.83%, n_steps: 25340
21-05-02 10:56:34 | Epoch: 12, batch: [1900/2140], lr: 0.000277, loss: 2.47392, ppl: 3.58, acc: 71.74%, n_steps: 25440
21-05-02 10:57:06 | Epoch: 12, batch: [2000/2140], lr: 0.000277, loss: 2.66247, ppl: 4.43, acc: 69.41%, n_steps: 25540
21-05-02 10:57:37 | Epoch: 12, batch: [2100/2140], lr: 0.000276, loss: 2.63270, ppl: 4.28, acc: 69.21%, n_steps: 25640
21-05-02 10:57:58 | Valid | Epoch: 12, loss: 3.20003, ppl: 7.91, acc: 61.71%, elapsed: 11.4 min

3.2 Translate

After training the model, use the following command to use your best model for interactive translation:

python translate.py -generate -src zh -tgt en -beam_size 5 -data_path /content/drive/MyDrive/Datasets/v15news -save_path /content

The translate results:

Please input a sentence(zh): 我 爱你。
i love you .

Please input a sentence(zh): 其中有一些政策被获得竞争优势的欲望所驱使,比如中国对绿色产业的支持。
some of these policies are driven by the desire to gain a competitive edge , such as china ’ s support for the green industry .

Please input a sentence(zh): 收入不平等可能再次开始扩大,尽管去年的中位家庭收入和贫困率指标有了重大改善。
income inequality is likely to start widening again , despite significant improvements in household income and the poverty rate last year .

Please input a sentence(zh): 在欧洲,知道目前银行才被明确要求解决资本短缺和杠杆问题,处理残留劣质资产。
in europe , it is known that banks are now required to address capital shortfalls and leverage problems and handle legacy assets .

Please input a sentence(zh): 须知民粹主义并不是某个心怀恶意的外来势力强加于欧洲身上的;而是在欧洲内部有机地滋生,并在真实存在且广泛的不满情绪的推动下蔓延开来。
populism is not imposed on europe by a malicious foreign power ; it is an air of organic tolerance within europe that is real and widespread .

It can also generate translations in batches for evaluation, which requires a test set in /content/drive/MyDrive/Datasets/v15news/, called test.zh and test.en respectively

python translate.py -generate -src zh -tgt en -data_path /content/drive/MyDrive/Datasets/v15news -save_path /content

The generate preocess:

# /content/result.txt
-S	此外 , 化石 燃料 成本 随 油价 涨@@ 跌 而 剧烈 波动 , 而且 核电 及 火电厂 的 集中 分布 也 为 电能 输送 设置 了 障碍 。
-T	moreover , fossil-fuel costs fluctuate wildly with oil prices , and the centralized nature of nuclear and coal-fired power stations creates distribution problems .
-P	moreover , the cost of fossil fuels has soared and plummeted , and the concentration of nuclear power and coal-fired power plants has created barriers to electricity delivery .

-S	肯尼迪 的 许多 顾问 和 美国 军方 领导人 敦促 他 采取 空袭 和 入侵 , 现在 我们 知道 , 这 有可能 导致 苏联 指挥官 动用 战术 核武器 。
-T	many of kennedy ’ s advisers , as well as us military leaders , urged an air strike and invasion , which we now know might have led soviet field commanders to use their tactical nuclear weapons .
-P	many of kennedy ’ s advisers and us military leaders urged him to adopt airstrikes and incursions , and now we know that it could lead to the use of tactical nuclear weapons by soviet commanders .

-S	事实上 , 倘若 美国 真 能 跟 中国 谈判 以 减少 对 美 贸易顺差 , 就 得 增加 与其 他 一些 国家 的 逆差 以 弥补 中间 的 差额 。
-T	and , in fact , if the us managed to negotiate a reduction in , say , china ’ s trade surplus vis-à-vis the us , the us would simply have to increase its deficit with some other country to make up for it .
-P	indeed , if the us were serious about negotiating with china to reduce its trade surplus with the us , it would have to increase its deficit with some other countries to make up for the difference .

3.3 Evaluation and comparison

And then, you can use the script to evaluate the translation results:

grep ^-T /content/result.txt | cut -f2 > ref.txt
grep ^-P /content/result.txt | cut -f2 > pred.txt
sed -r 's/(@@ )| (@@ ?$)//g' < pred.txt  > pred1.txt
sed -r 's/(@@ )| (@@ ?$)//g' < ref.txt  > ref1.txt
perl utils/multi-bleu.perl pred1.txt < ref1.txt

The evaluate result:

BLEU = 25.80, 58.7/31.7/19.7/12.6 (BP=0.991, ratio=0.991, hyp_len=194341, ref_len=196061)

The following is the evaluation result on the model trained using fairseq, it can be found that the two are very close

BLEU = 26.06, 59.3/32.5/20.3/13.2 (BP=0.972, ratio=0.972, hyp_len=190618, ref_len=196075)

4 Acknowledgement

These are the projects I have referred to during the implementation process, thank them very much.

  1. bentrevett/pytorch-seq2seq
  2. harvardnlp/annotated-transformer
  3. jadore801120/attention-is-all-you-need
  4. fairseq, OpenNMT, Tensor2Tensor, etc.

About

A simple and readable neural machine translation system

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published