|
1 | 1 | import pytest
|
2 | 2 | import pandas as pd
|
3 | 3 | import os
|
| 4 | +import numpy as np |
4 | 5 | import src.features.data_preprocess as dp
|
5 | 6 |
|
6 | 7 |
|
@@ -83,3 +84,142 @@ def test_ordinalencoding_test(mock_model_path):
|
83 | 84 | assert transformed_df_train["EmploymentStatus"].equals(
|
84 | 85 | transformed_df_test["EmploymentStatus"]
|
85 | 86 | )
|
| 87 | + |
| 88 | + |
| 89 | +def test_onehotencoding_train(mock_model_path): |
| 90 | + |
| 91 | + data = { |
| 92 | + "EducationLevel": ["Master", "Associate", "Bachelor", "High School"], |
| 93 | + "MaritalStatus": ["Married", "Single", "Married", "Single"], |
| 94 | + "HomeOwnershipStatus": ["Rent", "Own", "Mortgage", "Rent"], |
| 95 | + "LoanPurpose": ["Auto", "Debt Consolidation", "Home", "Other"], |
| 96 | + "NumberOfDependents": [0, 2, 1, 3] |
| 97 | + } |
| 98 | + sample_dataframe = pd.DataFrame(data) |
| 99 | + |
| 100 | + transformed_df = dp.onehotencoding( |
| 101 | + sample_dataframe, mock_model_path, train=True |
| 102 | + ) |
| 103 | + |
| 104 | + assert "EducationLevel" not in transformed_df.columns |
| 105 | + assert "MaritalStatus" not in transformed_df.columns |
| 106 | + assert "HomeOwnershipStatus" not in transformed_df.columns |
| 107 | + assert "LoanPurpose" not in transformed_df.columns |
| 108 | + assert "NumberOfDependents" not in transformed_df.columns |
| 109 | + |
| 110 | + assert any(col.startswith("EducationLevel_") |
| 111 | + for col in transformed_df.columns) |
| 112 | + assert any(col.startswith("MaritalStatus_") |
| 113 | + for col in transformed_df.columns) |
| 114 | + assert any(col.startswith("HomeOwnershipStatus_") |
| 115 | + for col in transformed_df.columns) |
| 116 | + assert any(col.startswith("LoanPurpose_") |
| 117 | + for col in transformed_df.columns) |
| 118 | + assert any(col.startswith("NumberOfDependents_") |
| 119 | + for col in transformed_df.columns) |
| 120 | + |
| 121 | + model_file = os.path.join(mock_model_path, "one_hot_encoder.pkl") |
| 122 | + assert os.path.exists(model_file) |
| 123 | + |
| 124 | + |
| 125 | +def test_onehotencoding_test(mock_model_path): |
| 126 | + |
| 127 | + data = { |
| 128 | + "EducationLevel": ["Master", "Associate", "Bachelor", "High School"], |
| 129 | + "MaritalStatus": ["Married", "Single", "Married", "Single"], |
| 130 | + "HomeOwnershipStatus": ["Rent", "Own", "Mortgage", "Rent"], |
| 131 | + "LoanPurpose": ["Auto", "Debt Consolidation", "Home", "Other"], |
| 132 | + "NumberOfDependents": [0, 2, 1, 3] |
| 133 | + } |
| 134 | + sample_dataframe = pd.DataFrame(data) |
| 135 | + |
| 136 | + _ = dp.onehotencoding( |
| 137 | + sample_dataframe, str(mock_model_path), train=True |
| 138 | + ) |
| 139 | + |
| 140 | + transformed_df_test = dp.onehotencoding( |
| 141 | + sample_dataframe, str(mock_model_path), train=False |
| 142 | + ) |
| 143 | + |
| 144 | + assert "EducationLevel" not in transformed_df_test.columns |
| 145 | + assert "MaritalStatus" not in transformed_df_test.columns |
| 146 | + assert "HomeOwnershipStatus" not in transformed_df_test.columns |
| 147 | + assert "LoanPurpose" not in transformed_df_test.columns |
| 148 | + assert "NumberOfDependents" not in transformed_df_test.columns |
| 149 | + |
| 150 | + assert any(col.startswith("EducationLevel_") |
| 151 | + for col in transformed_df_test.columns) |
| 152 | + assert any(col.startswith("MaritalStatus_") |
| 153 | + for col in transformed_df_test.columns) |
| 154 | + assert any(col.startswith("HomeOwnershipStatus_") |
| 155 | + for col in transformed_df_test.columns) |
| 156 | + assert any(col.startswith("LoanPurpose_") |
| 157 | + for col in transformed_df_test.columns) |
| 158 | + assert any(col.startswith("NumberOfDependents_") |
| 159 | + for col in transformed_df_test.columns) |
| 160 | + |
| 161 | + |
| 162 | +def test_normalization_train(mock_model_path): |
| 163 | + |
| 164 | + num_cols = ['Age', 'AnnualIncome', 'CreditScore', |
| 165 | + 'Experience', 'LoanAmount', 'LoanDuration', |
| 166 | + 'MonthlyDebtPayments', 'CreditCardUtilizationRate', |
| 167 | + 'NumberOfOpenCreditLines', 'NumberOfCreditInquiries', |
| 168 | + 'DebtToIncomeRatio', 'PaymentHistory', 'LengthOfCreditHistory', |
| 169 | + 'SavingsAccountBalance', 'CheckingAccountBalance', |
| 170 | + 'TotalAssets', 'TotalLiabilities', 'MonthlyIncome', |
| 171 | + 'UtilityBillsPaymentHistory', 'JobTenure', 'NetWorth', |
| 172 | + 'BaseInterestRate', 'InterestRate', 'MonthlyLoanPayment', |
| 173 | + 'TotalDebtToIncomeRatio', 'AnIncomeToAssetsRatio', |
| 174 | + 'AnExperienceToAnIncomeRatio', 'LoantoAnIncomeRatio', |
| 175 | + 'DependetToAnIncomeRatio', 'LoansToAssetsRatio', |
| 176 | + 'LoanPaymentToIncomeRatio', 'AnIncomeToDepts', 'AssetsToLoan'] |
| 177 | + |
| 178 | + data = np.random.rand(10, len(num_cols)) * 100 |
| 179 | + df_train = pd.DataFrame(data, columns=num_cols) |
| 180 | + |
| 181 | + df_normalized = dp.normalization( |
| 182 | + df_train, str(mock_model_path), train=True |
| 183 | + ) |
| 184 | + |
| 185 | + model_file = os.path.join(mock_model_path, 'standardscaler.pkl') |
| 186 | + assert os.path.exists(model_file) |
| 187 | + |
| 188 | + assert np.all( |
| 189 | + np.isclose(df_normalized.mean(), 0, atol=1e-1) |
| 190 | + ) |
| 191 | + assert np.all( |
| 192 | + np.isclose(df_normalized.std(), 1, atol=1e-1) |
| 193 | + ) |
| 194 | + |
| 195 | + |
| 196 | +def test_normalization_test(mock_model_path): |
| 197 | + |
| 198 | + num_cols = ['Age', 'AnnualIncome', 'CreditScore', |
| 199 | + 'Experience', 'LoanAmount', 'LoanDuration', |
| 200 | + 'MonthlyDebtPayments', 'CreditCardUtilizationRate', |
| 201 | + 'NumberOfOpenCreditLines', 'NumberOfCreditInquiries', |
| 202 | + 'DebtToIncomeRatio', 'PaymentHistory', 'LengthOfCreditHistory', |
| 203 | + 'SavingsAccountBalance', 'CheckingAccountBalance', |
| 204 | + 'TotalAssets', 'TotalLiabilities', 'MonthlyIncome', |
| 205 | + 'UtilityBillsPaymentHistory', 'JobTenure', 'NetWorth', |
| 206 | + 'BaseInterestRate', 'InterestRate', 'MonthlyLoanPayment', |
| 207 | + 'TotalDebtToIncomeRatio', 'AnIncomeToAssetsRatio', |
| 208 | + 'AnExperienceToAnIncomeRatio', 'LoantoAnIncomeRatio', |
| 209 | + 'DependetToAnIncomeRatio', 'LoansToAssetsRatio', |
| 210 | + 'LoanPaymentToIncomeRatio', 'AnIncomeToDepts', 'AssetsToLoan'] |
| 211 | + |
| 212 | + data = np.random.rand(10, len(num_cols)) * 100 |
| 213 | + df_train = pd.DataFrame(data, columns=num_cols) |
| 214 | + df_test = pd.DataFrame(data, columns=num_cols) |
| 215 | + |
| 216 | + df_train_normalized = dp.normalization( |
| 217 | + df_train, str(mock_model_path), train=True |
| 218 | + ) |
| 219 | + df_test_normalized = dp.normalization( |
| 220 | + df_test, (mock_model_path), train=False |
| 221 | + ) |
| 222 | + |
| 223 | + np.testing.assert_array_almost_equal( |
| 224 | + df_train_normalized.values, df_test_normalized, decimal=5 |
| 225 | + ) |
0 commit comments