Skip to content

Commit

Permalink
Add a feature to generate frequency domain waveforms at reduced frequ…
Browse files Browse the repository at this point in the history
…encies (#4948)

* added a feature to generate frequency domain waveforms at reduced frequencies

* Mofified the input argument --full-resolution-buffer-length and fixed some bugs

* Minor change

* Minor change

* updated the help message for --buffer-high-pass-length

---------

Co-authored-by: Kanchan Soni <[email protected]>
  • Loading branch information
Kanchan-05 and Kanchan Soni authored Nov 22, 2024
1 parent 7e4ca12 commit 47d4d8d
Showing 1 changed file with 42 additions and 1 deletion.
43 changes: 42 additions & 1 deletion bin/bank/pycbc_brute_bank
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,8 @@ parser.add_argument('--approximant', required=False,
parser.add_argument('--minimal-match', default=0.97, type=float)
parser.add_argument('--buffer-length', default=2, type=float,
help='size of waveform buffer in seconds')
parser.add_argument('--full-resolution-buffer-length', default=None, type=float,
help='Size of the waveform buffer in seconds for generating time-domain signals at full resolution before conversion to the frequency domain.')
parser.add_argument('--max-signal-length', type= float,
help="When specified, it cuts the maximum length of the waveform model to the lengh provided")
parser.add_argument('--sample-rate', default=2048, type=float,
Expand Down Expand Up @@ -275,6 +277,37 @@ class TriangleBank(object):

return bank, num_added / total_num

def decimate_frequency_domain(template, target_df):
"""
Returns a frequency-domain waveform resampled to a lower frequency resolution
(delta_f) by decimation.
Parameters
----------
template : pycbc.types.FrequencySeries
The input frequency-domain signal to be decimated.
target_df : float
The target frequency resolution (delta_f) for the decimated signal.
Returns
----------
decimated_template : pycbc.types.FrequencySeries
A new FrequencySeries object with the decimated data and the specified
target delta_f.
"""
# Calculate the decimation factor
decimation_factor = int(target_df / template.delta_f)

if decimation_factor < 1:
raise ValueError("Target delta_f must be greater than or equal to the original delta_f.")

# Decimate the data by selecting every 'decimation_factor'-th point
decimated_signal = template.data[::decimation_factor]

# Create a new FrequencySeries object with the decimated data and the target delta_f
decimated_template = pycbc.types.FrequencySeries(decimated_signal, delta_f=target_df)
return decimated_template

class GenUniformWaveform(object):
def __init__(self, buffer_length, sample_rate, f_lower):
self.f_lower = f_lower
Expand Down Expand Up @@ -308,7 +341,15 @@ class GenUniformWaveform(object):
kwds['approximant'] = kwds['approximant'].decode()

if kwds['approximant'] in pycbc.waveform.fd_approximants():
hp, hc = pycbc.waveform.get_fd_waveform(delta_f=self.delta_f,
if args.full_resolution_buffer_length is not None:
# Generate the frequency-domain waveform at full frequency resolution
high_hp, high_hc = pycbc.waveform.get_fd_waveform(delta_f=1 / args.full_resolution_buffer_length,
**kwds)
# Decimate the generated signal to a reduced frequency resolution
hp = decimate_frequency_domain(high_hp, 1 / args.buffer_length)
hc = decimate_frequency_domain(high_hc, 1 / args.buffer_length)
else:
hp, hc = pycbc.waveform.get_fd_waveform(delta_f=self.delta_f,
**kwds)
if args.use_cross:
hp = hc
Expand Down

0 comments on commit 47d4d8d

Please sign in to comment.