Skip to content

guoqi0531/CAFE-GAN-Pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CAFE-GAN-PyTorch

This is An unofficial PyTorch implementation of CAFE-GAN - Arbitrary Face Attribute Editing with Complementary Attention Feature

Inverting 13 attributes respectively. From left to right: Input, Reconstruction, Bald, Bangs, Black_Hair, Blond_Hair, Brown_Hair, Bushy_Eyebrows, Eyeglasses, Male, Mouth_Slightly_Open, Mustache, No_Beard, Pale_Skin, Young

single_attribution_edit

To-Do

  • Upload experimental results
    • FID
    • Single Attribute Editing Accuracy
  • Upload Pre-training model

Requirements

  • Python 3.7
  • PyTorch 1.7.0
  • TensorboardX
pip3 install -r requirements.txt
  • Dataset
    • CelebA dataset
      • Images should be placed in ./data/img_align_celeba/*.jpg
      • Attribute labels should be placed in ./data/list_attr_celeba.txt
    • HD-CelebA (optional)
    • CelebA-HQ dataset (optional)
      • Please see here.
      • Images should be placed in ./data/celeba-hq/celeba-*/*.jpg
      • Image list should be placed in ./data/image_list.txt
  • Pretrained models: we will upload pretrained models to Google Cloud.

Usage

To train an CAFE-GAN on CelebA 128x128

CUDA_VISIBLE_DEVICES=0 \
python train.py \
--data CelebA \
--use_stu \
--shortcut_layers 3 \
--data_path data/img_align_celeba \
--attr_path data/list_attr_celeba.txt \
--img_size 128 \
--batch_size 32 \
--kernel_size 3 \
--num_workers 4 \
--save_interval 5000 \
--sample_interval 1500 \
--data_save_root output \
--experiment_name 128_ShortCut3_KernelSize3

To train an CAFE-GAN on CelebA-HQ 256x256

CUDA_VISIBLE_DEVICES=0 \
python train.py \
--data CelebA-HQ \
--n_samples 8 \
--gpu \
--use_stu \
--img_size 256 \
--batch_size 8 \
--epochs 100 \
--shortcut_layers 3 \
--kernel_size 3 \
--one_more_conv \
--data_path data/celeba-hq/celeba-256 \
--attr_path data/list_attr_celeba.txt \
--image_list_path data/image_list.txt \
--data_save_root output \
--experiment_name 256_ShortCut3_KernelSize3

To visualize training details

tensorboard \
--logdir path/to/experiment/summary

To test with single attribute editing

CUDA_VISIBLE_DEVICES=0 \
python test.py \
--use_model 'G' \
--experiment_name your_experiment \
--data_path data/img_align_celeba \
--attr_path data/list_attr_celeba.txt \
--data_save_root output \
--test_int 0.75 \
--load_epoch epoch \
--gpu

To test with attention

CUDA_VISIBLE_DEVICES=0 \
python test.py \
--use_model 'D' \
--data_path data/img_align_celeba \
--attr_path data/list_attr_celeba.txt \
--experiment_name your_experiment \
--data_save_root output \
--gpu

Your custom images are supposed to be in path/to/Image_data and you also need an attribute list of the images(.txt) path/to/label_Data. Please crop and resize them into square images in advance.

Acknowledgement

The code is built upon AttGAN, STGAN and ABN, thanks for their excellent works!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%