Skip to content

Easily launch CloudMan and CloudBioLinux clusters with no manual configuration

Notifications You must be signed in to change notification settings

gregorydavidlong/biocloudcentral

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BioCloudCentral

Easily launch CloudMan and CloudBioLinux platforms without any configuration. You can use this directly on biocloudcentral.org or run it locally - either way, it takes about 2 minutes to go from nothing to a configured and scalable analysis platform on top of cloud resources.

Development

This Django application deploys directly to Heroku. To run locally, start by installing Python, PostgreSQL and virtualenv. When developing locally, build a local virtualenv and install the dependencies:

$ virtualenv --no-site-packages .
$ source bin/activate
$ pip install -r requirements.txt

Next, create a PostgreSQL database (remember to change the port, username, and password as well as to match those to what you put into your biocloudcentral/settings.py), apply the database migrations, and, optionally, preload your database with the AWS information:

$ sudo su postgres -c "psql --port #### -c \"CREATE ROLE afgane LOGIN CREATEDB PASSWORD 'password'\""
$ createdb --username afgane --port #### biocloudcentral
$ python biocloudcentral/manage.py syncdb
$ python biocloudcentral/manage.py migrate biocloudcentral
$ python biocloudcentral/manage.py loaddata biocloudcentral/aws_db_data.json

Finally, start the web server:

$ python biocloudcentral/manage.py runserver

Use git to commit changes and push to Heroku for live deployment:

$ git remote add heroku [email protected]:biocloudcentral.git
$ git push heroku master

LICENSE

The code is freely available under the MIT license.

About

Easily launch CloudMan and CloudBioLinux clusters with no manual configuration

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 79.0%
  • JavaScript 21.0%