Skip to content

Commit

Permalink
feat(stdlib): Reimplement Number.gamma and Number.factorial
Browse files Browse the repository at this point in the history
  • Loading branch information
spotandjake committed Oct 25, 2024
1 parent 584c4d2 commit 42a98c1
Show file tree
Hide file tree
Showing 3 changed files with 164 additions and 0 deletions.
33 changes: 33 additions & 0 deletions compiler/test/stdlib/number.test.gr
Original file line number Diff line number Diff line change
Expand Up @@ -1057,3 +1057,36 @@ assert Number.isClose(
assert Number.isNaN(Number.tan(Infinity))
assert Number.isNaN(Number.tan(-Infinity))
assert Number.isNaN(Number.tan(NaN))

// Number.gamma
// Note: Currently gamma will overflow the memory when using a bigint as such there are no tests for this
assert Number.gamma(1) == 1
assert Number.gamma(3) == 2
assert Number.gamma(10) == 362880
assert Number.isClose(Number.gamma(0.5), Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(1/2), Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(5/2), (3/4) * Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(7/2), (15/8) * Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(-0.5), -2 * Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(-1/2), -2 * Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(-3/2), (4/3) * Number.sqrt(Number.pi))
assert Number.isClose(Number.gamma(-5/2), (-8/15) * Number.sqrt(Number.pi))
assert Number.isNaN(Number.gamma(-1))
assert Number.isNaN(Number.gamma(-10))
assert Number.isNaN(Number.gamma(-100))
assert Number.isNaN(Number.gamma(Infinity))
assert Number.isNaN(Number.gamma(NaN))

// Number.factorial
// Note: Currently factorial will overflow the memory when using a bigint as such there are no tests for this
assert Number.factorial(0) == 1
assert Number.factorial(10) == 3628800
assert Number.factorial(5) == 120
assert Number.factorial(0) == 1
assert Number.factorial(-5) == -120
assert Number.factorial(-10) == -3628800
assert Number.isClose(Number.factorial(0.5), (1/2) * Number.sqrt(Number.pi))
assert Number.isClose(Number.factorial(1/2), (1/2) * Number.sqrt(Number.pi))
assert Number.isClose(Number.factorial(5/2), (15/8) * Number.sqrt(Number.pi))
assert Number.isNaN(Number.factorial(Infinity))
assert Number.isNaN(Number.factorial(NaN))
75 changes: 75 additions & 0 deletions stdlib/number.gr
Original file line number Diff line number Diff line change
Expand Up @@ -1118,3 +1118,78 @@ provide let tan = (radians: Number) => {
WasmI32.toGrain(newFloat64(value)): Number
}
}

// Math.gamma implemented using the Lanczos approximation
// https://en.wikipedia.org/wiki/Lanczos_approximation
/**
* Computes the gamma function of a value using Lanczos approximation.
*
* @param z: The value to interpolate
* @returns The gamma of the given value
*
* @since v0.7.0
*/
provide let rec gamma = z => {
if (z == 0 || isInteger(z) && z < 0) {
NaN
} else if (isInteger(z) && z > 0) {
let mut output = 1
for (let mut i = 1; i < z; i += 1) {
output *= i
}
output
} else {
let mut z = z
let g = 7
let c = [>
0.99999999999980993,
676.5203681218851,
-1259.1392167224028,
771.32342877765313,
-176.61502916214059,
12.507343278686905,
-0.13857109526572012,
9.9843695780195716e-6,
1.5056327351493116e-7,
]
let mut output = 0
if (z < 0.5) {
output = pi / sin(pi * z) / gamma(1 - z)
} else if (z == 0.5) {
// Handle this case separately because it is out of the domain of Number.pow when calculating
output = 1.7724538509055159
} else {
z -= 1
let mut x = c[0]
for (let mut i = 1; i < g + 2; i += 1) {
x += c[i] / (z + i)
}

let t = z + g + 0.5
output = sqrt(2 * pi) * (t ** (z + 0.5)) * exp(t * -1) * x
}
if (abs(output) == Infinity) Infinity else output
}
}

/**
* Computes the product of consecutive integers for an integer input and computes the gamma function for non-integer inputs.
*
* @param n: The value to factorialize
* @returns The factorial of the given value
*
* @throws InvalidArgument(String): When `n` is a negative integer
*
* @since v0.7.0
*/
provide let rec factorial = n => {
if (isInteger(n) && n < 0) {
gamma(abs(n) + 1) * -1
} else if (!isInteger(n) && n < 0) {
throw Exception.InvalidArgument(
"Cannot compute the factorial of a negative non-integer",
)
} else {
gamma(n + 1)
}
}
56 changes: 56 additions & 0 deletions stdlib/number.md
Original file line number Diff line number Diff line change
Expand Up @@ -1659,3 +1659,59 @@ Examples:
Number.tan(0) == 0
```

### Number.**gamma**

<details disabled>
<summary tabindex="-1">Added in <code>next</code></summary>
No other changes yet.
</details>

```grain
gamma : (z: Number) => Number
```

Computes the gamma function of a value using Lanczos approximation.

Parameters:

|param|type|description|
|-----|----|-----------|
|`z`|`Number`|The value to interpolate|

Returns:

|type|description|
|----|-----------|
|`Number`|The gamma of the given value|

### Number.**factorial**

<details disabled>
<summary tabindex="-1">Added in <code>next</code></summary>
No other changes yet.
</details>

```grain
factorial : (n: Number) => Number
```

Computes the product of consecutive integers for an integer input and computes the gamma function for non-integer inputs.

Parameters:

|param|type|description|
|-----|----|-----------|
|`n`|`Number`|The value to factorialize|

Returns:

|type|description|
|----|-----------|
|`Number`|The factorial of the given value|

Throws:

`InvalidArgument(String)`

* When `n` is a negative integer

0 comments on commit 42a98c1

Please sign in to comment.