-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
checked in a bunch of stuff I hadn't been tracking
- Loading branch information
Ian Goodfellow
committed
Oct 18, 2012
1 parent
f32bc18
commit f0bcd99
Showing
99 changed files
with
6,150 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix | ||
import numpy as np | ||
|
||
class HackDataset(DenseDesignMatrix): | ||
|
||
def __init__(self, labels_from, X, start, stop): | ||
|
||
super(HackDataset, self).__init__(X = X, y = labels_from.y) | ||
|
||
convert_to_one_hot = True | ||
if convert_to_one_hot: | ||
if not ( self.y.min() == 0): | ||
raise AssertionError("Expected y.min == 0 but y.min == "+str(self.y.min())) | ||
nclass = self.y.max() + 1 | ||
y = np.zeros((self.y.shape[0], nclass), dtype='float32') | ||
for i in xrange(self.y.shape[0]): | ||
y[i,self.y[i]] = 1. | ||
self.y = y | ||
|
||
self.X = self.X[start:stop,:] | ||
assert self.X.shape[0] == stop - start | ||
self.y = self.y[start:stop,:] | ||
assert self.y.shape[0] == stop - start | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# like cifar10_N3 but with both dense and convolutional units | ||
!obj:pylearn2.scripts.train.Train { | ||
dataset: &data !obj:galatea.datasets.zca_dataset.ZCA_Dataset { | ||
preprocessed_dataset: !pkl: "/data/lisa/data/cifar10/pylearn2_gcn_whitened/train.pkl", | ||
preprocessor: !pkl: "/data/lisa/data/cifar10/pylearn2_gcn_whitened/preprocessor.pkl" | ||
}, | ||
model: !obj:galatea.dbm.inpaint.super_dbm.SuperDBM { | ||
batch_size : 2, # 50 failed | ||
niter: 6, #note: since we have to backprop through the whole thing, this does | ||
#increase the memory usage | ||
visible_layer: !obj:galatea.dbm.inpaint.super_dbm.GaussianConvolutionalVisLayer { | ||
rows: 32, | ||
cols: 32, | ||
channels: 3, | ||
init_beta: 3.7, | ||
init_mu: 0. | ||
}, | ||
hidden_layers: [ | ||
!obj:galatea.dbm.inpaint.super_dbm.CompositeLayer { | ||
layer_name: "h0", | ||
components: [ | ||
!obj:galatea.dbm.inpaint.super_dbm.DenseMaxPool { | ||
pool_size : 1, | ||
detector_layer_dim: 400, | ||
irange: 0.02, | ||
init_bias: -1, | ||
layer_name: 'h0_dense' | ||
}, | ||
!obj:galatea.dbm.inpaint.super_dbm.ConvMaxPool { | ||
border_mode : 'full', | ||
output_channels: 64, | ||
kernel_rows: 9, | ||
kernel_cols: 9, | ||
pool_rows: 2, | ||
pool_cols: 2, | ||
irange: 0.05, | ||
layer_name: 'h0_conv', | ||
init_bias: -5. | ||
} | ||
], | ||
}, | ||
!obj:galatea.dbm.inpaint.super_dbm.CompositeLayer { | ||
layer_name: "h1", | ||
components: [ | ||
!obj:galatea.dbm.inpaint.super_dbm.DenseMaxPool { | ||
pool_size : 1, | ||
detector_layer_dim: 400, | ||
irange: 0.02, | ||
init_bias: -1, | ||
layer_name: 'h1_dense' | ||
}, | ||
!obj:galatea.dbm.inpaint.super_dbm.ConvMaxPool { | ||
border_mode : 'full', | ||
output_channels: 96, | ||
kernel_rows: 5, | ||
kernel_cols: 5, | ||
pool_rows: 3, | ||
pool_cols: 3, | ||
irange: 0.3, | ||
layer_name: 'h1_conv', | ||
init_bias: -4.5 | ||
} | ||
], | ||
inputs_to_components: { 0: [0], 1: [0, 1] } | ||
}, | ||
!obj:galatea.dbm.inpaint.super_dbm.CompositeLayer { | ||
layer_name: "h2", | ||
components: [ | ||
!obj:galatea.dbm.inpaint.super_dbm.DenseMaxPool { | ||
pool_size : 1, | ||
detector_layer_dim: 400, | ||
irange: 0.02, | ||
init_bias: -1, | ||
layer_name: 'h2_dense' | ||
}, | ||
!obj:galatea.dbm.inpaint.super_dbm.ConvMaxPool { | ||
border_mode : 'full', | ||
output_channels: 128, | ||
kernel_rows: 3, | ||
kernel_cols: 3, | ||
pool_rows: 2, | ||
pool_cols: 2, | ||
irange: 0.3, | ||
layer_name: 'h2_conv', | ||
init_bias: -4. | ||
} | ||
], | ||
inputs_to_components: { 0: [0], 1: [0, 1] } | ||
} | ||
] | ||
}, | ||
algorithm: !obj:galatea.dbm.inpaint.inpaint_alg.InpaintAlgorithm { | ||
batches_per_iter : 10, | ||
monitoring_batches : 1, | ||
monitoring_dataset : *data, | ||
init_alpha : [0.256, 1.28, 2.56, 12.8, 25.6], | ||
max_iter: 2, | ||
cost : !obj:galatea.dbm.inpaint.super_inpaint.SuperInpaint { | ||
both_directions : 1, | ||
l1_act_targets: [ | ||
[ [.0, .0], [.06, .0]], | ||
[ [.0, .0], [.12, .0]], | ||
[ [.0, .0], [ .16, .0]] | ||
], | ||
l1_act_coeffs: [ | ||
[ [.0, .0], [1., 0.]], | ||
[ [.0, .0], [1., 0.]], | ||
[ [.0, .0], [ .1, 0.]] | ||
], | ||
noise : 1 | ||
}, | ||
mask_gen : !obj:galatea.dbm.inpaint.super_inpaint.MaskGen { | ||
drop_prob: 0.5, | ||
balance: 0, | ||
sync_channels: 1 | ||
} | ||
}, | ||
save_path: "${PYLEARN2_TRAIN_FILE_FULL_STEM}.pkl", | ||
save_freq : 1 | ||
} | ||
|
Oops, something went wrong.