-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added jia's code, and some other things I hadn't been tracking
- Loading branch information
Ian Goodfellow
committed
May 16, 2012
1 parent
2a5d6eb
commit 6087a83
Showing
94 changed files
with
10,021 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
makebatches | ||
[numcases numdims numbatches]=size(batchdata); | ||
data = [batchdata(:,:,1)]; | ||
N=1; | ||
|
||
load fullmnist_dbm | ||
D = 5; | ||
N1 = 6; | ||
N2 = 7; | ||
ofs = 622; | ||
data = data(1,ofs:(ofs+D-1)); | ||
|
||
vishid = 10 * vishid(ofs:(ofs+D-1),1:N1); | ||
hidpen = 10 * hidpen(1:N1,1:N2); | ||
visbiases = visbiases(1,ofs:(ofs+D-1)); | ||
hidbiases = hidbiases(1,1:N1); | ||
penbiases = penbiases(1,1:N2); | ||
|
||
[numdims numhids] = size(vishid); | ||
[numhids numpens] = size(hidpen); | ||
|
||
[numcases numdims numbatches]=size(batchdata); | ||
N=numcases; | ||
[h1, h2] = ... | ||
mf_class(data,vishid,hidbiases,visbiases,hidpen,penbiases); | ||
|
||
|
||
save('model.mat','vishid','hidpen','visbiases','hidbiases','penbiases') | ||
save('data.mat', 'data', 'h1', 'h2' ) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
function [f, df] = ECG1(VV,Dim,XX,target,temp_h2); | ||
|
||
numdims = Dim(1); | ||
numhids = Dim(2); | ||
numpens = Dim(3); | ||
N = size(XX,1); | ||
|
||
X=VV; | ||
% Do decomversion. | ||
w1_vishid = reshape(X(1:numdims*numhids),numdims,numhids); | ||
xxx = numdims*numhids; | ||
w1_penhid = reshape(X(xxx+1:xxx+numpens*numhids),numpens,numhids); | ||
xxx = xxx+numpens*numhids; | ||
hidpen = reshape(X(xxx+1:xxx+numhids*numpens),numhids,numpens); | ||
xxx = xxx+numhids*numpens; | ||
w_class = reshape(X(xxx+1:xxx+numpens*10),numpens,10); | ||
xxx = xxx+numpens*10; | ||
hidbiases = reshape(X(xxx+1:xxx+numhids),1,numhids); | ||
xxx = xxx+numhids; | ||
penbiases = reshape(X(xxx+1:xxx+numpens),1,numpens); | ||
xxx = xxx+numpens; | ||
topbiases = reshape(X(xxx+1:xxx+10),1,10); | ||
xxx = xxx+10; | ||
|
||
bias_hid= repmat(hidbiases,N,1); | ||
bias_pen = repmat(penbiases,N,1); | ||
bias_top = repmat(topbiases,N,1); | ||
|
||
w1probs = 1./(1 + exp(-XX*w1_vishid -temp_h2*w1_penhid - bias_hid )); | ||
w2probs = 1./(1 + exp(-w1probs*hidpen - bias_pen)); | ||
targetout = exp(w2probs*w_class + bias_top ); | ||
targetout = targetout./repmat(sum(targetout,2),1,10); | ||
|
||
f = -sum(sum( target(:,1:end).*log(targetout))); | ||
|
||
IO = (targetout-target(:,1:end)); | ||
Ix_class=IO; | ||
dw_class = w2probs'*Ix_class; | ||
dtopbiases = sum(Ix_class); | ||
|
||
Ix2 = (Ix_class*w_class').*w2probs.*(1-w2probs); | ||
dw2_hidpen = w1probs'*Ix2; | ||
dw2_biases = sum(Ix2); | ||
|
||
Ix1 = (Ix2*hidpen').*w1probs.*(1-w1probs); | ||
dw1_penhid = temp_h2'*Ix1; | ||
|
||
dw1_vishid = XX'*Ix1; | ||
dw1_biases = sum(Ix1); | ||
|
||
df = [dw1_vishid(:)' dw1_penhid(:)' dw2_hidpen(:)' dw_class(:)' dw1_biases(:)' dw2_biases(:)' dtopbiases(:)']'; | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
% Version 1.000 | ||
% | ||
% Code provided by Ruslan Salakhutdinov | ||
% | ||
% Permission is granted for anyone to copy, use, modify, or distribute this | ||
% program and accompanying programs and documents for any purpose, provided | ||
% this copyright notice is retained and prominently displayed, along with | ||
% a note saying that the original programs are available from our | ||
% web page. | ||
% The programs and documents are distributed without any warranty, express or | ||
% implied. As the programs were written for research purposes only, they have | ||
% not been tested to the degree that would be advisable in any important | ||
% application. All use of these programs is entirely at the user's own risk. | ||
|
||
|
||
test_err=[]; | ||
test_crerr=[]; | ||
train_err=[]; | ||
train_crerr=[]; | ||
|
||
fprintf(1,'\nTraining discriminative model on MNIST by minimizing cross entropy error. \n'); | ||
fprintf(1,'60 batches of 1000 cases each. \n'); | ||
|
||
[numcases numdims numbatches]=size(batchdata); | ||
N=numcases; | ||
|
||
load fullmnist_dbm | ||
[numdims numhids] = size(vishid); | ||
[numhids numpens] = size(hidpen); | ||
|
||
%%%%%% Preprocess the data %%%%%%%%%%%%%%%%%%%%%% | ||
|
||
[testnumcases testnumdims testnumbatches]=size(testbatchdata); | ||
N=testnumcases; | ||
temp_h2_test = zeros(testnumcases,numpens,testnumbatches); | ||
for batch = 1:testnumbatches | ||
data = [testbatchdata(:,:,batch)]; | ||
[temp_h1, temp_h2] = ... | ||
mf_class(data,vishid,hidbiases,visbiases,hidpen,penbiases); | ||
temp_h2_test(:,:,batch) = temp_h2; | ||
end | ||
|
||
[numcases numdims numbatches]=size(batchdata); | ||
N=numcases; | ||
temp_h2_train = zeros(numcases,numpens,numbatches); | ||
for batch = 1:numbatches | ||
data = [batchdata(:,:,batch)]; | ||
[temp_h1, temp_h2] = ... | ||
mf_class(data,vishid,hidbiases,visbiases,hidpen,penbiases); | ||
temp_h2_train(:,:,batch) = temp_h2; | ||
end | ||
|
||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
w1_penhid = hidpen'; | ||
w1_vishid = vishid; | ||
w2 = hidpen; | ||
h1_biases = hidbiases; h2_biases = penbiases; | ||
|
||
w_class = 0.1*randn(numpens,10); | ||
topbiases = 0.1*randn(1,10); | ||
|
||
for epoch = 1:maxepoch | ||
|
||
%%%% TEST STATS | ||
%%%% Error rates | ||
[testnumcases testnumdims testnumbatches]=size(testbatchdata); | ||
N=testnumcases; | ||
bias_hid= repmat(h1_biases,N,1); | ||
bias_pen = repmat(h2_biases,N,1); | ||
bias_top = repmat(topbiases,N,1); | ||
|
||
err=0; | ||
err_cr=0; | ||
counter=0; | ||
for batch = 1:testnumbatches | ||
data = [testbatchdata(:,:,batch)]; | ||
temp_h2 = temp_h2_test(:,:,batch); | ||
target = [testbatchtargets(:,:,batch)]; | ||
|
||
w1probs = 1./(1 + exp(-data*w1_vishid -temp_h2*w1_penhid - bias_hid )); | ||
w2probs = 1./(1 + exp(-w1probs*w2 - bias_pen)); | ||
targetout = exp(w2probs*w_class + bias_top ); | ||
targetout = targetout./repmat(sum(targetout,2),1,10); | ||
[I J]=max(targetout,[],2); | ||
[I1 J1]=max(target,[],2); | ||
counter=counter+length(find(J~=J1)); | ||
err_cr = err_cr- sum(sum( target(:,1:end).*log(targetout))) ; | ||
end | ||
|
||
test_err(epoch)=counter; | ||
test_crerr(epoch)=err_cr; | ||
fprintf(1,'\nepoch %d test misclassification err %d (out of 10000), test cross entropy error %f \n',epoch,test_err(epoch),test_crerr(epoch)); | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
%%%% TRAINING STATS | ||
%%%% Error rates | ||
[numcases numdims numbatches]=size(batchdata); | ||
N=numcases; | ||
err=0; | ||
err_cr=0; | ||
counter=0; | ||
for batch = 1:numbatches | ||
data = [batchdata(:,:,batch)]; | ||
temp_h2 = temp_h2_train(:,:,batch); | ||
target = [batchtargets(:,:,batch)]; | ||
|
||
w1probs = 1./(1 + exp(-data*w1_vishid -temp_h2*w1_penhid - bias_hid )); | ||
w2probs = 1./(1 + exp(-w1probs*w2 - bias_pen)); | ||
targetout = exp(w2probs*w_class + bias_top ); | ||
targetout = targetout./repmat(sum(targetout,2),1,10); | ||
[I J]=max(targetout,[],2); | ||
[I1 J1]=max(target,[],2); | ||
counter=counter+length(find(J~=J1)); | ||
|
||
err_cr = err_cr- sum(sum( target(:,1:end).*log(targetout))) ; | ||
end | ||
|
||
train_err(epoch)=counter; | ||
train_crerr(epoch)=err_cr; | ||
fprintf(1,'epoch %d train misclassification err %d train (out of 60000), train cross entropy error %f \n',epoch, train_err(epoch),train_crerr(epoch)); | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
save backprop_weights w1_vishid w1_penhid w2 w_class h1_biases h2_biases topbiases test_err test_crerr train_err train_crerr | ||
|
||
%%% Do Conjugate Gradient Optimization | ||
|
||
rr = randperm(600); | ||
for batch = 1:numbatches/100 | ||
fprintf(1,'epoch %d batch %d\r',epoch,batch); | ||
data = zeros(10000,numdims); | ||
temp_h2 = zeros(10000,numpens); | ||
targets = zeros(10000,10); | ||
tt1=(batch-1)*100+1:batch*100; | ||
for tt=1:100 | ||
data( (tt-1)*100+1:tt*100,:) = batchdata(:,:,rr(tt1(tt))); | ||
temp_h2( (tt-1)*100+1:tt*100,:) = temp_h2_train(:,:,rr(tt1(tt))); | ||
targets( (tt-1)*100+1:tt*100,:) = batchtargets(:,:,rr(tt1(tt))); | ||
end | ||
|
||
%%%%%%%% DO CG with 3 linesearches | ||
|
||
VV = [w1_vishid(:)' w1_penhid(:)' w2(:)' w_class(:)' h1_biases(:)' h2_biases(:)' topbiases(:)']'; | ||
Dim = [numdims; numhids; numpens; ]; | ||
|
||
% checkgrad('CG_MNIST_INIT',VV,10^-5,Dim,data,targets); | ||
max_iter=3; | ||
if epoch<6 | ||
[X, fX, num_iter,ecg_XX] = minimize(VV,'CG_MNIST_INIT',max_iter,Dim,data,targets,temp_h2); | ||
else | ||
[X, fX, num_iter,ecg_XX] = minimize(VV,'CG_MNIST',max_iter,Dim,data,targets,temp_h2); | ||
end | ||
w1_vishid = reshape(X(1:numdims*numhids),numdims,numhids); | ||
xxx = numdims*numhids; | ||
w1_penhid = reshape(X(xxx+1:xxx+numpens*numhids),numpens,numhids); | ||
xxx = xxx+numpens*numhids; | ||
w2 = reshape(X(xxx+1:xxx+numhids*numpens),numhids,numpens); | ||
xxx = xxx+numhids*numpens; | ||
w_class = reshape(X(xxx+1:xxx+numpens*10),numpens,10); | ||
xxx = xxx+numpens*10; | ||
h1_biases = reshape(X(xxx+1:xxx+numhids),1,numhids); | ||
xxx = xxx+numhids; | ||
h2_biases = reshape(X(xxx+1:xxx+numpens),1,numpens); | ||
xxx = xxx+numpens; | ||
topbiases = reshape(X(xxx+1:xxx+10),1,10); | ||
xxx = xxx+10; | ||
|
||
end | ||
|
||
end | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
function [f, df] = ECG1(VV,Dim,XX,target,temp_h2); | ||
|
||
numdims = Dim(1); | ||
numhids = Dim(2); | ||
numpens = Dim(3); | ||
N = size(XX,1); | ||
|
||
X=VV; | ||
% Do decomversion. | ||
w1_vishid = reshape(X(1:numdims*numhids),numdims,numhids); | ||
xxx = numdims*numhids; | ||
w1_penhid = reshape(X(xxx+1:xxx+numpens*numhids),numpens,numhids); | ||
xxx = xxx+numpens*numhids; | ||
hidpen = reshape(X(xxx+1:xxx+numhids*numpens),numhids,numpens); | ||
xxx = xxx+numhids*numpens; | ||
w_class = reshape(X(xxx+1:xxx+numpens*10),numpens,10); | ||
xxx = xxx+numpens*10; | ||
hidbiases = reshape(X(xxx+1:xxx+numhids),1,numhids); | ||
xxx = xxx+numhids; | ||
penbiases = reshape(X(xxx+1:xxx+numpens),1,numpens); | ||
xxx = xxx+numpens; | ||
topbiases = reshape(X(xxx+1:xxx+10),1,10); | ||
xxx = xxx+10; | ||
|
||
bias_hid= repmat(hidbiases,N,1); | ||
bias_pen = repmat(penbiases,N,1); | ||
bias_top = repmat(topbiases,N,1); | ||
|
||
w1probs = 1./(1 + exp(-XX*w1_vishid -temp_h2*w1_penhid - bias_hid )); | ||
w2probs = 1./(1 + exp(-w1probs*hidpen - bias_pen)); | ||
targetout = exp(w2probs*w_class + bias_top ); | ||
targetout = targetout./repmat(sum(targetout,2),1,10); | ||
|
||
f = -sum(sum( target(:,1:end).*log(targetout))); | ||
|
||
IO = (targetout-target(:,1:end)); | ||
Ix_class=IO; | ||
dw_class = w2probs'*Ix_class; | ||
dtopbiases = sum(Ix_class); | ||
|
||
Ix2 = (Ix_class*w_class').*w2probs.*(1-w2probs); | ||
dw2_hidpen = w1probs'*Ix2; | ||
dw2_biases = sum(Ix2); | ||
|
||
Ix1 = (Ix2*hidpen').*w1probs.*(1-w1probs); | ||
dw1_penhid = temp_h2'*Ix1; | ||
|
||
dw1_vishid = XX'*Ix1; | ||
dw1_biases = sum(Ix1); | ||
|
||
df = [dw1_vishid(:)' dw1_penhid(:)' dw2_hidpen(:)' dw_class(:)' dw1_biases(:)' dw2_biases(:)' dtopbiases(:)']'; | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
function [f, df] = ECG1(VV,Dim,XX,target,temp_h2); | ||
|
||
numdims = Dim(1); | ||
numhids = Dim(2); | ||
numpens = Dim(3); | ||
N = size(XX,1); | ||
|
||
X=VV; | ||
% Do decomversion. | ||
w1_vishid = reshape(X(1:numdims*numhids),numdims,numhids); | ||
xxx = numdims*numhids; | ||
w1_penhid = reshape(X(xxx+1:xxx+numpens*numhids),numpens,numhids); | ||
xxx = xxx+numpens*numhids; | ||
hidpen = reshape(X(xxx+1:xxx+numhids*numpens),numhids,numpens); | ||
xxx = xxx+numhids*numpens; | ||
w_class = reshape(X(xxx+1:xxx+numpens*10),numpens,10); | ||
xxx = xxx+numpens*10; | ||
hidbiases = reshape(X(xxx+1:xxx+numhids),1,numhids); | ||
xxx = xxx+numhids; | ||
penbiases = reshape(X(xxx+1:xxx+numpens),1,numpens); | ||
xxx = xxx+numpens; | ||
topbiases = reshape(X(xxx+1:xxx+10),1,10); | ||
xxx = xxx+10; | ||
|
||
bias_hid= repmat(hidbiases,N,1); | ||
bias_pen = repmat(penbiases,N,1); | ||
bias_top = repmat(topbiases,N,1); | ||
|
||
w1probs = 1./(1 + exp(-XX*w1_vishid -temp_h2*w1_penhid - bias_hid )); | ||
w2probs = 1./(1 + exp(-w1probs*hidpen - bias_pen)); | ||
targetout = exp(w2probs*w_class + bias_top ); | ||
targetout = targetout./repmat(sum(targetout,2),1,10); | ||
|
||
f = -sum(sum( target(:,1:end).*log(targetout))); | ||
|
||
IO = (targetout-target(:,1:end)); | ||
Ix_class=IO; | ||
dw_class = w2probs'*Ix_class; | ||
dtopbiases = sum(Ix_class); | ||
|
||
Ix2 = (Ix_class*w_class').*w2probs.*(1-w2probs); | ||
dw2_hidpen = w1probs'*Ix2; | ||
dw2_biases = sum(Ix2); | ||
|
||
Ix1 = (Ix2*hidpen').*w1probs.*(1-w1probs); | ||
dw1_penhid = temp_h2'*Ix1; | ||
dw1_vishid = XX'*Ix1; | ||
dw1_biases = sum(Ix1); | ||
|
||
dhidpen = 0*dw2_hidpen; | ||
dw1_penhid = 0*dw1_penhid; | ||
dw1_vishid = 0*dw1_vishid; | ||
dw2_biases = 0*dw2_biases; | ||
dw1_biases = 0*dw1_biases; | ||
|
||
df = [dw1_vishid(:)' dw1_penhid(:)' dw2_hidpen(:)' dw_class(:)' dw1_biases(:)' dw2_biases(:)' dtopbiases(:)']'; | ||
|
||
|
Oops, something went wrong.