An analytical pipeline for powered analysis of CRISPR screens
Use the following command to create a conda environment with the essential packages used by iAnalyzeR.
conda env create --file=iAnalyzeR.yaml
conda activate iAnalyzeR
The metadata file resides in the working directory and lists the required information for each sample (e.g. sample name, path to files, sample type, and etc). For example:
sample | fastq | lib.type | sample.type | sample.rep |
---|---|---|---|---|
hi_r1 | hi_r1.fastq.gz | F | high | 1 |
lo_r1 | ro_l1.fastq.gz | R | low | 1 |
The following command will then run the analysis:
python iAnalyzer.py --runMode --ref=<ref> <metadata> <formula> <outfile.txt>
Run python iAnalyzer.py
for usage.
The following are the options:
--runMode
vs.--printMode
:--printMode
prints all the commands that are run-a
or--aligner
: The aligner used (currently only bowtie2 supported)-w
or--weighting
: Method for combining z-score. Options are 'n' (sample size), 'SE' (standard error), and 'SES' (standardized effect size) (default SES)--hasUMI
or--noUMI
: Whether reads contain UMI or not--reflib
: The bowtie2 index basename (e.g. CRISPRi_v2_human_library for CRISPRi_v2_human_library.fa)--ref
: The reference samples that others are compare to (e.g. 'low' in example above)formula
: The design formula (e.g. ~sample.type in example above, i.e. high vs. low)