Generate voxel representations of protein-ligand complexes for deep learning applications.
- GPU-accelerated voxelization of protein-ligand complexes.
- Easy customization of voxel grid channels and parameters.
- Readily usable with PyTorch.
- Support for multiple file formats (to be expanded).
- ✅ PDB
- ✅ MOL2
Install DockTGrid using pip:
$ python -m pip install docktgrid
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. Python 3.11 is recommended, other versions may work but are not tested.
Clone the repository:
$ git clone https://github.com/gmmsb-lncc/docktgrid.git $ cd docktgrid
Create a new environment using venv and activate it:
$ python3.11 -m venv env $ source env/bin/activate
Or if you prefer using conda:
$ conda create --prefix ./venv python=3.11 $ conda activate ./venv
Install the required packages:
$ python -m pip install -r requirements.txt
Run the tests:
$ python -m pytest tests/
See the documentation for more information on how to use DockTGrid.
There are also some examples in the notebooks folder.
This project is licensed under the LGPL v3.0 license.
If you use DockTGrid in your research, please cite:
- da Silva, M. M. P., Guedes, I. A., Custódio, F. L., & Dardenne, L. E. (2024). DockTGrid (0.0.2). Zenodo. https://zenodo.org/doi/10.5281/zenodo.10304711
@software{mpds2024docktgrid,
author = {da Silva, Matheus Müller Pereira and
Guedes, Isabella Alvim and
Custódio, Fábio Lima and
Dardenne, Laurent Emmanuel},
title = {DockTGrid},
month = mar,
year = 2024,
publisher = {Zenodo},
version = {0.0.2},
doi = {10.5281/zenodo.10304711},
url = {https://zenodo.org/doi/10.5281/zenodo.10304711}
}