-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1490 from girder/downsample
Zarr Tile Sink: Generate Downsampled Levels
- Loading branch information
Showing
3 changed files
with
461 additions
and
114 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
from enum import Enum | ||
from typing import Dict | ||
|
||
import numpy as np | ||
from PIL import Image | ||
|
||
|
||
class ResampleMethod(Enum): | ||
PIL_NEAREST = Image.Resampling.NEAREST # 0 | ||
PIL_LANCZOS = Image.Resampling.LANCZOS # 1 | ||
PIL_BILINEAR = Image.Resampling.BILINEAR # 2 | ||
PIL_BICUBIC = Image.Resampling.BICUBIC # 3 | ||
PIL_BOX = Image.Resampling.BOX # 4 | ||
PIL_HAMMING = Image.Resampling.HAMMING # 5 | ||
PIL_MAX_ENUM = 5 | ||
NP_MEAN = 6 | ||
NP_MEDIAN = 7 | ||
NP_MODE = 8 | ||
NP_MAX = 9 | ||
NP_MIN = 10 | ||
NP_NEAREST = 11 | ||
NP_MAX_COLOR = 12 | ||
NP_MIN_COLOR = 13 | ||
|
||
|
||
def pilResize( | ||
tile: np.ndarray, | ||
new_shape: Dict, | ||
resample_method: ResampleMethod, | ||
) -> np.ndarray: | ||
# Only NEAREST works for 16 bit images | ||
img = Image.fromarray(tile) | ||
resized_img = img.resize( | ||
(new_shape['width'], new_shape['height']), | ||
resample=resample_method.value, | ||
) | ||
result = np.array(resized_img).astype(tile.dtype) | ||
return result | ||
|
||
|
||
def numpyResize( | ||
tile: np.ndarray, | ||
new_shape: Dict, | ||
resample_method: ResampleMethod, | ||
) -> np.ndarray: | ||
if resample_method == ResampleMethod.NP_NEAREST: | ||
return tile[::2, ::2] | ||
else: | ||
if tile.shape[0] % 2 != 0: | ||
tile = np.append(tile, np.expand_dims(tile[-1], axis=0), axis=0) | ||
if tile.shape[1] % 2 != 0: | ||
tile = np.append(tile, np.expand_dims(tile[:, -1], axis=1), axis=1) | ||
|
||
pixel_selection = None | ||
subarrays = np.asarray( | ||
[ | ||
tile[0::2, 0::2], | ||
tile[1::2, 0::2], | ||
tile[0::2, 1::2], | ||
tile[1::2, 1::2], | ||
], | ||
) | ||
|
||
if resample_method == ResampleMethod.NP_MEAN: | ||
return np.mean(subarrays, axis=0).astype(tile.dtype) | ||
elif resample_method == ResampleMethod.NP_MEDIAN: | ||
return np.median(subarrays, axis=0).astype(tile.dtype) | ||
elif resample_method == ResampleMethod.NP_MAX: | ||
return np.max(subarrays, axis=0).astype(tile.dtype) | ||
elif resample_method == ResampleMethod.NP_MIN: | ||
return np.min(subarrays, axis=0).astype(tile.dtype) | ||
elif resample_method == ResampleMethod.NP_MAX_COLOR: | ||
summed = np.sum(subarrays, axis=3) | ||
pixel_selection = np.argmax(summed, axis=0) | ||
elif resample_method == ResampleMethod.NP_MIN_COLOR: | ||
summed = np.sum(subarrays, axis=3) | ||
pixel_selection = np.argmin(summed, axis=0) | ||
elif resample_method == ResampleMethod.NP_MODE: | ||
# if a pixel occurs twice in a set of four, it is a mode | ||
# if no mode, default to pixel 0. check for minimal matches 1=2, 1=3, 2=3 | ||
pixel_selection = np.where( | ||
( | ||
(subarrays[1] == subarrays[2]).all(axis=2) | | ||
(subarrays[1] == subarrays[3]).all(axis=2) | ||
), | ||
1, np.where( | ||
(subarrays[2] == subarrays[3]).all(axis=2), | ||
2, 0, | ||
), | ||
) | ||
|
||
if pixel_selection is not None: | ||
if len(tile.shape) > 2: | ||
pixel_selection = np.expand_dims(pixel_selection, axis=2) | ||
pixel_selection = np.repeat(pixel_selection, tile.shape[2], axis=2) | ||
return np.choose(pixel_selection, subarrays).astype(tile.dtype) | ||
else: | ||
msg = f'Unknown resample method {resample_method}.' | ||
raise ValueError(msg) | ||
|
||
|
||
def downsampleTileHalfRes( | ||
tile: np.ndarray, | ||
resample_method: ResampleMethod, | ||
) -> np.ndarray: | ||
new_shape = { | ||
'height': (tile.shape[0] + 1) // 2, | ||
'width': (tile.shape[1] + 1) // 2, | ||
'bands': 1, | ||
} | ||
if len(tile.shape) > 2: | ||
new_shape['bands'] = tile.shape[-1] | ||
if resample_method.value <= ResampleMethod.PIL_MAX_ENUM.value: | ||
if new_shape['bands'] > 4: | ||
result = np.empty( | ||
(new_shape['height'], new_shape['width'], new_shape['bands']), | ||
dtype=tile.dtype, | ||
) | ||
for band_index in range(new_shape['bands']): | ||
result[(..., band_index)] = pilResize( | ||
tile[(..., band_index)], | ||
new_shape, | ||
resample_method, | ||
) | ||
return result | ||
else: | ||
return pilResize(tile, new_shape, resample_method) | ||
else: | ||
return numpyResize(tile, new_shape, resample_method) |
Oops, something went wrong.