Skip to content

Commit

Permalink
Stream tensor (huggingface#2429)
Browse files Browse the repository at this point in the history
* Support Minus(u) for arbitrary values of u, e.g. Minus(3).

* Forces u to be strictly positive.

* Add StreamTensor.
  • Loading branch information
LaurentMazare authored Aug 17, 2024
1 parent 7cff589 commit 736d8eb
Show file tree
Hide file tree
Showing 2 changed files with 208 additions and 0 deletions.
2 changes: 2 additions & 0 deletions candle-core/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ pub mod scalar;
pub mod shape;
mod sort;
mod storage;
pub mod streaming;
mod strided_index;
mod tensor;
mod tensor_cat;
Expand All @@ -84,6 +85,7 @@ pub use indexer::IndexOp;
pub use layout::Layout;
pub use shape::{Shape, D};
pub use storage::Storage;
pub use streaming::{StreamTensor, StreamingBinOp, StreamingModule};
pub use strided_index::{StridedBlocks, StridedIndex};
pub use tensor::{Tensor, TensorId};
pub use variable::Var;
Expand Down
206 changes: 206 additions & 0 deletions candle-core/src/streaming.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
use crate::{Result, Shape, Tensor};

pub trait Dim: crate::shape::Dim + Copy {}
impl<T: crate::shape::Dim + Copy> Dim for T {}

/// A stream tensor is used in streaming module. It can either contain an actual tensor or be
/// empty.
#[derive(Clone)]
pub struct StreamTensor(Option<Tensor>);

impl std::fmt::Debug for StreamTensor {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.0 {
Some(t) => write!(f, "{:?}", t.shape()),
None => write!(f, "Empty"),
}
}
}

impl std::convert::From<Option<Tensor>> for StreamTensor {
fn from(value: Option<Tensor>) -> Self {
Self(value)
}
}

impl std::convert::From<Tensor> for StreamTensor {
fn from(value: Tensor) -> Self {
Self(Some(value))
}
}

impl std::convert::From<()> for StreamTensor {
fn from(_value: ()) -> Self {
Self(None)
}
}

impl StreamTensor {
pub fn empty() -> Self {
Self(None)
}

pub fn from_tensor(tensor: Tensor) -> Self {
Self(Some(tensor))
}

pub fn shape(&self) -> Option<&Shape> {
self.0.as_ref().map(|t| t.shape())
}

pub fn cat2<D: Dim>(&self, rhs: &Self, dim: D) -> Result<Self> {
let xs = match (&self.0, &rhs.0) {
(Some(lhs), Some(rhs)) => {
let xs = Tensor::cat(&[lhs, rhs], dim)?;
Some(xs)
}
(Some(xs), None) | (None, Some(xs)) => Some(xs.clone()),
(None, None) => None,
};
Ok(Self(xs))
}

pub fn seq_len<D: Dim>(&self, dim: D) -> Result<usize> {
match &self.0 {
None => Ok(0),
Some(v) => v.dim(dim),
}
}

pub fn reset(&mut self) {
self.0 = None
}

pub fn narrow<D: Dim>(&self, dim: D, offset: usize, len: usize) -> Result<StreamTensor> {
let t = match &self.0 {
None => None,
Some(t) => {
let seq_len = t.dim(dim)?;
if seq_len <= offset {
None
} else {
let t = t.narrow(dim, offset, usize::min(len, seq_len - offset))?;
Some(t)
}
}
};
Ok(Self(t))
}

/// Splits the Streaming Tensor on the time axis `dim` with the first `lhs_len` elements
/// returned in the first output and the remaining in the second output.
pub fn split<D: Dim>(&self, dim: D, lhs_len: usize) -> Result<(Self, Self)> {
match &self.0 {
None => Ok((Self::empty(), Self::empty())),
Some(t) => {
let seq_len = t.dim(dim)?;
let lhs_len = usize::min(seq_len, lhs_len);
if lhs_len == 0 {
Ok((Self::empty(), t.clone().into()))
} else {
let lhs = Self::from_tensor(t.narrow(dim, 0, lhs_len)?);
let rhs_len = seq_len - lhs_len;
let rhs = if rhs_len == 0 {
Self::empty()
} else {
Self::from_tensor(t.narrow(dim, lhs_len, rhs_len)?)
};
Ok((lhs, rhs))
}
}
}
}

pub fn as_option(&self) -> Option<&Tensor> {
self.0.as_ref()
}

pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
match &self.0 {
None => Ok(Self::empty()),
Some(t) => Ok(Self::from_tensor(t.apply(m)?)),
}
}
}

/// Streaming modules take as input a stream tensor and return a stream tensor. They may perform
/// some internal buffering so that enough data has been received for the module to be able to
/// perform some operations.
pub trait StreamingModule {
// TODO: Should we also have a flush method?
fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor>;
fn reset_state(&mut self);
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum BinOp {
Add,
Mul,
Sub,
Div,
}

#[derive(Debug, Clone)]
pub struct StreamingBinOp {
prev_lhs: StreamTensor,
prev_rhs: StreamTensor,
pub op: BinOp,
pub dim: crate::D,
}

impl StreamingBinOp {
pub fn new(op: BinOp, dim: crate::D) -> Self {
Self {
prev_lhs: StreamTensor::empty(),
prev_rhs: StreamTensor::empty(),
op,
dim,
}
}

pub fn reset_state(&mut self) {
self.prev_lhs.reset();
self.prev_rhs.reset();
}

pub fn forward(&self, lhs: &Tensor, rhs: &Tensor) -> Result<Tensor> {
match self.op {
BinOp::Add => Tensor::add(lhs, rhs),
BinOp::Mul => Tensor::mul(lhs, rhs),
BinOp::Sub => Tensor::sub(lhs, rhs),
BinOp::Div => Tensor::div(lhs, rhs),
}
}

pub fn step(&mut self, lhs: &StreamTensor, rhs: &StreamTensor) -> Result<StreamTensor> {
let lhs = StreamTensor::cat2(&self.prev_lhs, lhs, self.dim)?;
let rhs = StreamTensor::cat2(&self.prev_rhs, rhs, self.dim)?;
let lhs_len = lhs.seq_len(self.dim)?;
let rhs_len = rhs.seq_len(self.dim)?;
let common_len = usize::min(lhs_len, rhs_len);
let (lhs, prev_lhs) = lhs.split(self.dim, common_len)?;
let (rhs, prev_rhs) = rhs.split(self.dim, common_len)?;
let ys = match (lhs.0, rhs.0) {
(Some(lhs), Some(rhs)) => {
let ys = self.forward(&lhs, &rhs)?;
StreamTensor::from_tensor(ys)
}
(None, None) => StreamTensor::empty(),
(lhs, rhs) => crate::bail!("INTERNAL ERROR inconsistent lhs and rhs {lhs:?} {rhs:?}"),
};
self.prev_lhs = prev_lhs;
self.prev_rhs = prev_rhs;
Ok(ys)
}
}

/// Simple wrapper that doesn't do any buffering.
pub struct Map<T: crate::Module>(T);

impl<T: crate::Module> StreamingModule for Map<T> {
fn reset_state(&mut self) {}

fn step(&mut self, xs: &StreamTensor) -> Result<StreamTensor> {
xs.apply(&self.0)
}
}

0 comments on commit 736d8eb

Please sign in to comment.