forked from huggingface/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add the SigLIP model. (huggingface#2515)
* Add the SigLIP model. * Add more to the forward pass of the vision model. * Complete the forward pass. * Add the siglip example. * Fix. * Another fix. * Get everything in place. * Add a readme.
- Loading branch information
1 parent
62525e8
commit 261ed65
Showing
8 changed files
with
797 additions
and
54 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
## SigLIP | ||
|
||
SigLIP is multi-modal text-vision model that improves over CLIP by using a sigmoid based loss, | ||
[HuggingFace](https://huggingface.co/google/siglip-base-patch16-224). | ||
|
||
### Running an example | ||
``` | ||
$ cargo run --features cuda -r --example siglip - | ||
softmax_image_vec: [2.1912122e-14, 2.3624872e-14, 1.0, 1.0, 2.4787932e-8, 3.2784535e-12] | ||
Results for image: candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg | ||
Probability: 0.0000% Text: a cycling race | ||
Probability: 0.0000% Text: a photo of two cats | ||
Probability: 100.0000% Text: a robot holding a candle | ||
Results for image: candle-examples/examples/yolo-v8/assets/bike.jpg | ||
Probability: 100.0000% Text: a cycling race | ||
Probability: 0.0000% Text: a photo of two cats | ||
Probability: 0.0000% Text: a robot holding a candle | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
#[cfg(feature = "mkl")] | ||
extern crate intel_mkl_src; | ||
|
||
#[cfg(feature = "accelerate")] | ||
extern crate accelerate_src; | ||
|
||
use anyhow::Error as E; | ||
use clap::Parser; | ||
|
||
use candle::{DType, Device, Tensor}; | ||
use candle_nn::{ops::softmax, VarBuilder}; | ||
use candle_transformers::models::siglip; | ||
|
||
use tokenizers::Tokenizer; | ||
|
||
#[derive(Parser)] | ||
struct Args { | ||
#[arg(long)] | ||
model: Option<String>, | ||
|
||
#[arg(long)] | ||
tokenizer: Option<String>, | ||
|
||
#[arg(long, use_value_delimiter = true)] | ||
images: Option<Vec<String>>, | ||
|
||
#[arg(long)] | ||
cpu: bool, | ||
|
||
#[arg(long, use_value_delimiter = true)] | ||
sequences: Option<Vec<String>>, | ||
} | ||
|
||
fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> { | ||
let img = image::ImageReader::open(path)?.decode()?; | ||
let (height, width) = (image_size, image_size); | ||
let img = img.resize_to_fill( | ||
width as u32, | ||
height as u32, | ||
image::imageops::FilterType::Triangle, | ||
); | ||
let img = img.to_rgb8(); | ||
let img = img.into_raw(); | ||
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)? | ||
.permute((2, 0, 1))? | ||
.to_dtype(DType::F32)? | ||
.affine(2. / 255., -1.)?; | ||
Ok(img) | ||
} | ||
|
||
fn load_images<T: AsRef<std::path::Path>>( | ||
paths: &Vec<T>, | ||
image_size: usize, | ||
) -> anyhow::Result<Tensor> { | ||
let mut images = vec![]; | ||
for path in paths { | ||
let tensor = load_image(path, image_size)?; | ||
images.push(tensor); | ||
} | ||
let images = Tensor::stack(&images, 0)?; | ||
Ok(images) | ||
} | ||
|
||
pub fn main() -> anyhow::Result<()> { | ||
let args = Args::parse(); | ||
let model_file = match args.model { | ||
None => { | ||
let api = hf_hub::api::sync::Api::new()?; | ||
let api = api.model("google/siglip-base-patch16-224".to_string()); | ||
api.get("model.safetensors")? | ||
} | ||
Some(model) => model.into(), | ||
}; | ||
let tokenizer = get_tokenizer(args.tokenizer)?; | ||
let config = siglip::Config::base_patch16_224(); | ||
let device = candle_examples::device(args.cpu)?; | ||
let vec_imgs = match args.images { | ||
Some(imgs) => imgs, | ||
None => vec![ | ||
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(), | ||
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(), | ||
], | ||
}; | ||
let images = load_images(&vec_imgs, config.vision_config.image_size)?.to_device(&device)?; | ||
let vb = | ||
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? }; | ||
let model = siglip::Model::new(&config, vb)?; | ||
let (input_ids, vec_seq) = tokenize_sequences(&config, args.sequences, &tokenizer, &device)?; | ||
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?; | ||
let softmax_image = softmax(&logits_per_image, 1)?; | ||
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?; | ||
println!("softmax_image_vec: {:?}", softmax_image_vec); | ||
let probability_vec = softmax_image_vec | ||
.iter() | ||
.map(|v| v * 100.0) | ||
.collect::<Vec<f32>>(); | ||
let probability_per_image = probability_vec.len() / vec_imgs.len(); | ||
for (i, img) in vec_imgs.iter().enumerate() { | ||
let start = i * probability_per_image; | ||
let end = start + probability_per_image; | ||
let prob = &probability_vec[start..end]; | ||
println!("\n\nResults for image: {}\n", img); | ||
for (i, p) in prob.iter().enumerate() { | ||
println!("Probability: {:.4}% Text: {} ", p, vec_seq[i]); | ||
} | ||
} | ||
Ok(()) | ||
} | ||
|
||
pub fn get_tokenizer(tokenizer: Option<String>) -> anyhow::Result<Tokenizer> { | ||
let tokenizer = match tokenizer { | ||
None => { | ||
let api = hf_hub::api::sync::Api::new()?; | ||
let api = api.model("google/siglip-base-patch16-224".to_string()); | ||
api.get("tokenizer.json")? | ||
} | ||
Some(file) => file.into(), | ||
}; | ||
|
||
Tokenizer::from_file(tokenizer).map_err(E::msg) | ||
} | ||
|
||
pub fn tokenize_sequences( | ||
config: &siglip::Config, | ||
sequences: Option<Vec<String>>, | ||
tokenizer: &Tokenizer, | ||
device: &Device, | ||
) -> anyhow::Result<(Tensor, Vec<String>)> { | ||
let pad_id = config.text_config.pad_token_id; | ||
let vec_seq = match sequences { | ||
Some(seq) => seq, | ||
None => vec![ | ||
"a cycling race".to_string(), | ||
"a photo of two cats".to_string(), | ||
"a robot holding a candle".to_string(), | ||
], | ||
}; | ||
let mut tokens = vec![]; | ||
for seq in vec_seq.clone() { | ||
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?; | ||
tokens.push(encoding.get_ids().to_vec()); | ||
} | ||
let max_len = config.text_config.max_position_embeddings; | ||
// Pad the sequences to have the same length | ||
for token_vec in tokens.iter_mut() { | ||
let len_diff = max_len - token_vec.len(); | ||
if len_diff > 0 { | ||
token_vec.extend(vec![pad_id; len_diff]); | ||
} | ||
} | ||
let input_ids = Tensor::new(tokens, device)?; | ||
Ok((input_ids, vec_seq)) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.