Skip to content

Commit

Permalink
Remove _Diff module in favor of AbstractDifferentiation
Browse files Browse the repository at this point in the history
  • Loading branch information
gerlero committed Feb 10, 2024
1 parent 0ce37d1 commit b8a0439
Show file tree
Hide file tree
Showing 9 changed files with 50 additions and 69 deletions.
6 changes: 3 additions & 3 deletions src/Fronts.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,5 @@
module Fronts

include("_Diff.jl")
using ._Diff: derivative, value_and_derivative, value_and_derivatives

include("_Rootfinding.jl")
using ._Rootfinding: bracket_bisect

Expand All @@ -11,6 +8,9 @@ using ._Chebyshev: chebdif

using LinearAlgebra: Diagonal, Tridiagonal, SingularException

using ForwardDiff: derivative
using AbstractDifferentiation: value_and_derivative,
value_derivative_and_second_derivative, ForwardDiffBackend
using ArgCheck: @argcheck
using StaticArrays: @SVector, @SMatrix
using RecursiveArrayTools: ArrayPartition
Expand Down
2 changes: 1 addition & 1 deletion src/PorousModels/PorousModels.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
module PorousModels

using .._Diff: derivative
import ..Fronts: DiffusionEquation

using ForwardDiff: derivative
using NaNMath: pow
using ArgCheck: @argcheck

Expand Down
28 changes: 0 additions & 28 deletions src/_Diff.jl

This file was deleted.

2 changes: 1 addition & 1 deletion src/finite.jl
Original file line number Diff line number Diff line change
Expand Up @@ -457,6 +457,6 @@ d_dr(sol::FiniteSolution, r, t) = derivative(r -> sol(r, t), r)
d_dt(sol::FiniteSolution, r, t) = derivative(t -> sol(r, t), t)

function flux(sol::FiniteSolution, r, t)
val, d_dr = value_and_derivative(r -> sol(r, t), r)
val, (d_dr,) = value_and_derivative(ForwardDiffBackend(), r -> sol(r, t), r)
return -conductivity(sol.prob.eq, val) * d_dr
end
16 changes: 10 additions & 6 deletions src/odes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,15 +12,17 @@ See also: [`DifferentialEquations`](https://diffeq.sciml.ai/stable/), [`StaticAr
function boltzmann(eq::DiffusionEquation{1})
let K = u -> conductivity(eq, u), C = u -> capacity(eq, u)
function f((u, du_do), ::SciMLBase.NullParameters, o)
K_, dK_du = value_and_derivative(K, u)
K_, (dK_du,) = value_and_derivative(ForwardDiffBackend(), K, u)

d²u_do² = -((C(u) * o / 2 + dK_du * du_do) / K_) * du_do

return @SVector [du_do, d²u_do²]
end
function jac((u, du_do), ::SciMLBase.NullParameters, o)
K_, dK_du, d²K_du² = value_and_derivatives(K, u)
C_, dC_du = value_and_derivative(C, u)
K_, (dK_du,), (d²K_du²,) = value_derivative_and_second_derivative(ForwardDiffBackend(),
K,
u)
C_, (dC_du,) = value_and_derivative(ForwardDiffBackend(), C, u)

j21 = -du_do * (K_ * (2 * d²K_du² * du_do + dC_du * o) -
dK_du * (C_ * o + 2 * dK_du * du_do)) / (2K_^2)
Expand All @@ -37,15 +39,17 @@ function boltzmann(eq::DiffusionEquation{m}) where {m}
@assert m in 2:3
let K = u -> conductivity(eq, u), C = u -> capacity(eq, u), k = m - 1
function f((u, du_do), ::SciMLBase.NullParameters, o)
K_, dK_du = value_and_derivative(K, u)
K_, (dK_du,) = value_and_derivative(ForwardDiffBackend(), K, u)

d²u_do² = -((C(u) * o / 2 + dK_du * du_do) / K_ + k / o) * du_do

return @SVector [du_do, d²u_do²]
end
function jac((u, du_do), ::SciMLBase.NullParameters, o)
K_, dK_du, d²K_du² = value_and_derivatives(K, u)
C_, dC_du = value_and_derivative(C, u)
K_, (dK_du,), (d²K_du²,) = value_derivative_and_second_derivative(ForwardDiffBackend(),
K,
u)
C_, (dC_du,) = value_and_derivative(ForwardDiffBackend(), C, u)

j21 = -du_do * (K_ * (2 * d²K_du² * du_do + dC_du * o) -
dK_du * (C_ * o + 2 * dK_du * du_do)) / (2K_^2)
Expand Down
5 changes: 3 additions & 2 deletions test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,11 +1,12 @@
using Fronts
using Fronts._Diff
using Fronts.PorousModels
using Fronts.ParamEstim
using Fronts.SciMLBase: NullParameters
using Test

import ForwardDiff
using AbstractDifferentiation: derivative, second_derivative, value_and_derivative,
value_derivative_and_second_derivative, ForwardDiffBackend
import NaNMath
using NumericalIntegration
using OrdinaryDiffEq: ODEFunction, ODEProblem
Expand All @@ -14,8 +15,8 @@ using StaticArrays: @SVector, SVector
using Plots: plot

@testset "Fronts.jl" begin
include("test_Diff.jl")
include("test_PorousModels.jl")
include("test_differentiation.jl")
include("test_boltzmann.jl")
include("test_dirichlet.jl")
include("test_neumann.jl")
Expand Down
26 changes: 0 additions & 26 deletions test/test_Diff.jl

This file was deleted.

4 changes: 2 additions & 2 deletions test/test_PorousModels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
htest = -10.0

@test (@inferred (bc, @inferred θh(bc, htest))) htest
@test (@inferred Ch(bc, htest)) derivative(h -> θh(bc, h), htest)
@test (@inferred Ch(bc, htest)) ForwardDiff.derivative(h -> θh(bc, h), htest)
@test (@inferred (bc, @inferred θh(bc, htest))) @inferred Ch(bc, htest)
@test (@inferred (bc, @inferred θh(bc, htest))) @inferred Kh(bc, htest)

Expand Down Expand Up @@ -47,7 +47,7 @@
@test Kh(vg, htest) 9.430485870291618e-9

@test (@inferred (vg, @inferred θh(vg, htest))) htest
@test (@inferred Ch(vg, htest)) derivative(h -> θh(vg, h), htest)
@test (@inferred Ch(vg, htest)) ForwardDiff.derivative(h -> θh(vg, h), htest)
@test (@inferred (vg, @inferred θh(vg, htest))) @inferred Ch(vg, htest)
@test (@inferred (vg, @inferred θh(vg, htest))) @inferred Kh(vg, htest)

Expand Down
30 changes: 30 additions & 0 deletions test/test_differentiation.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
@testset "differentiation" begin
# HF135 membrane, Van Genuchten model
# Data from Buser (PhD thesis, 2016)
# http://hdl.handle.net/1773/38064
θr = 0.0473
θs = 0.945
k = 5.50e-13 # m^2
α = 0.2555 # 1/m
n = 2.3521

model = VanGenuchten(n = n, α = α, k = k, θr = θr, θs = θs)

D(θ) = (model, θ)

for θ in range(θr + eps(θr), θs - eps(θs), length = 10)
D_, (dD_dθ,) = value_and_derivative(ForwardDiffBackend(), D, θ)
@test D_ == D(θ)
@test dD_dθ == only(derivative(ForwardDiffBackend(), D, θ)) ==
ForwardDiff.derivative(D, θ)

D_, (dD_dθ,), (d²D_dθ²,) = value_derivative_and_second_derivative(ForwardDiffBackend(),
D,
θ)
@test D_ == D(θ)
@test dD_dθ == only(derivative(ForwardDiffBackend(), D, θ)) ==
ForwardDiff.derivative(D, θ)
@test d²D_dθ² == only(second_derivative(ForwardDiffBackend(), D, θ)) ==
ForwardDiff.derivative-> ForwardDiff.derivative(D, θ), θ)
end
end

0 comments on commit b8a0439

Please sign in to comment.