-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
91c70cf
commit c5c4320
Showing
3 changed files
with
457 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,291 @@ | ||
# ================================================================= | ||
# | ||
# Terms and Conditions of Use | ||
# | ||
# Unless otherwise noted, computer program source code of this | ||
# distribution # is covered under Crown Copyright, Government of | ||
# Canada, and is distributed under the MIT License. | ||
# | ||
# The Canada wordmark and related graphics associated with this | ||
# distribution are protected under trademark law and copyright law. | ||
# No permission is granted to use them outside the parameters of | ||
# the Government of Canada's corporate identity program. For | ||
# more information, see | ||
# http://www.tbs-sct.gc.ca/fip-pcim/index-eng.asp | ||
# | ||
# Copyright title to all 3rd party software distributed with this | ||
# software is held by the respective copyright holders as noted in | ||
# those files. Users are asked to read the 3rd Party Licenses | ||
# referenced with those assets. | ||
# | ||
# Copyright (c) 2024 Tom Kralidis | ||
# | ||
# Permission is hereby granted, free of charge, to any person | ||
# obtaining a copy of this software and associated documentation | ||
# files (the "Software"), to deal in the Software without | ||
# restriction, including without limitation the rights to use, | ||
# copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the | ||
# Software is furnished to do so, subject to the following | ||
# conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be | ||
# included in all copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES | ||
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT | ||
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | ||
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | ||
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | ||
# OTHER DEALINGS IN THE SOFTWARE. | ||
# | ||
# ================================================================= | ||
|
||
import json | ||
import logging | ||
import os | ||
from typing import Union | ||
|
||
from pygeometa.core import get_charstring | ||
from pygeometa.helpers import json_serial | ||
from pygeometa.schemas.base import BaseOutputSchema | ||
|
||
THISDIR = os.path.dirname(os.path.realpath(__file__)) | ||
|
||
LOGGER = logging.getLogger(__name__) | ||
|
||
|
||
class TDML_AIOutputSchema(BaseOutputSchema): | ||
"""OGC Training Data Markup Language for Artificial Intelligence""" | ||
|
||
def __init__(self): | ||
""" | ||
Initialize object | ||
:returns: pygeometa.schemas.base.BaseOutputSchema | ||
""" | ||
|
||
description = 'OGC Training Data Markup Language for Artificial Intelligence' # noqa | ||
|
||
super().__init__('tdml-ai', description, 'json', THISDIR) | ||
|
||
def write(self, mcf: dict, stringify: str = True) -> Union[dict, str]: | ||
""" | ||
Write outputschema to JSON string buffer | ||
:param mcf: dict of MCF content model | ||
:param stringify: whether to return a string representation (default) | ||
else native (dict, etree) | ||
:returns: `dict` or `str` of MCF as an OARec record representation | ||
""" | ||
|
||
self.lang1 = mcf['metadata'].get('language') | ||
self.lang2 = mcf['metadata'].get('language_alternate') | ||
|
||
minx, miny, maxx, maxy = (mcf['identification']['extents'] | ||
['spatial'][0]['bbox']) | ||
|
||
title = get_charstring(mcf['identification'].get('title'), | ||
self.lang1, self.lang2) | ||
|
||
description = get_charstring(mcf['identification'].get('abstract'), | ||
self.lang1, self.lang2) | ||
|
||
dataset = { | ||
'version': '1.0', | ||
'id': mcf['metadata']['identifier'], | ||
'type': 'AI_EOTrainingDataset', | ||
'name': title, | ||
'description': description, | ||
'extent': { | ||
'geographicElement': { | ||
'geographicBoundingBox': { | ||
'westBoundLongitude': minx, | ||
'eastBoundLongitude': maxx, | ||
'southBoundLatitude': miny, | ||
'northBoundLatitude': maxy | ||
} | ||
} | ||
} | ||
} | ||
|
||
LOGGER.debug('Checking for temporal') | ||
if all(['temporal' in mcf['identification']['extents'], | ||
mcf['identification']['extents']['temporal'] != [{}]]): | ||
|
||
begin = mcf['identification']['extents']['temporal'][0]['begin'] | ||
end = mcf['identification']['extents']['temporal'][0].get('end') | ||
|
||
if begin in ['now', 'None', None]: | ||
begin = None | ||
|
||
if end in ['now', 'None', None]: | ||
end = None | ||
|
||
if [begin, end] == [None, None]: | ||
pass | ||
|
||
else: | ||
dataset['extent']['temporalElement'] = {'TimePeriod': {}} | ||
for pos in [[begin, 'beginPosition'], ['end', 'endPosition']]: | ||
if pos[0] is not None: | ||
dataset['extent']['temporalElement']['TimePeriod'][pos[1]] = pos[0] # noqa | ||
|
||
dataset['license'] = mcf['identification']['license']['name'] | ||
|
||
LOGGER.debug('Checking for dates') | ||
if 'dates' in mcf['identification']: | ||
if 'creation' in mcf['identification']['dates']: | ||
dataset['createdTime'] = str(mcf['identification']['dates']['creation']) # noqa | ||
if 'revision' in mcf['identification']['dates']: | ||
dataset['updatedTime'] = str(mcf['identification']['dates']['revision']) # noqa | ||
|
||
LOGGER.debug('Checking for contacts') | ||
dataset['providers'] = self.generate_providers(mcf['contact']) | ||
|
||
LOGGER.debug('Checking for tasks') | ||
dataset['tasks'] = self.generate_tasks(mcf['tasks']) | ||
|
||
LOGGER.debug('Checking for classes') | ||
dataset['classes'] = self.generate_classes(mcf['classes']) | ||
dataset['numberOfClasses'] = len(dataset['classes']) | ||
|
||
LOGGER.debug('Checking for bands') | ||
dataset['variables'] = self.generate_variables(mcf['attributes']) | ||
|
||
LOGGER.debug('Checking for doi') | ||
if 'doi' in mcf['identification']: | ||
dataset['doi'] = mcf['identification']['doi'] | ||
|
||
all_keywords = [] | ||
|
||
LOGGER.debug('Checking for keywords') | ||
for key, value in mcf['identification']['keywords'].items(): | ||
keywords = get_charstring(value.get('keywords'), self.lang1, | ||
self.lang2) | ||
|
||
for kw in keywords[0]: | ||
all_keywords.append(kw) | ||
|
||
if all_keywords: | ||
dataset['keywords'] = all_keywords | ||
|
||
LOGGER.debug('Checking for data') | ||
dataset['data'] = self.generate_data(mcf['training-data']) | ||
|
||
if stringify: | ||
return json.dumps(dataset, default=json_serial, indent=4) | ||
return dataset | ||
|
||
def generate_variables(self, attributes: list) -> list: | ||
""" | ||
Generates 1..n tasks | ||
:param contact: `list` of attributes | ||
:returns: `list` of variable objects | ||
""" | ||
|
||
variables = [] | ||
|
||
for attribute in attributes: | ||
variable = { | ||
'name': attribute['name'], | ||
} | ||
if 'units' in attribute: | ||
variable['unit'] = attribute['units'] | ||
if 'abstract' in attribute: | ||
variable['description'] = attribute['abstract'] | ||
|
||
variables.append(variable) | ||
|
||
return variables | ||
|
||
def generate_classes(self, classes: list) -> list: | ||
""" | ||
Generates 1..n tasks | ||
:param contact: `list` of classes | ||
:returns: `list` of class objects | ||
""" | ||
|
||
classes_ = [] | ||
|
||
for count, value in enumerate(classes): | ||
classes_.append({ | ||
'key': value, | ||
'value': count | ||
}) | ||
|
||
return classes_ | ||
|
||
def generate_tasks(self, tasks: dict) -> list: | ||
""" | ||
Generates 1..n tasks | ||
:param contact: `dict` of tasks | ||
:returns: `list` of tasks | ||
""" | ||
|
||
tasks_ = [] | ||
|
||
for key, value in tasks.items(): | ||
tasks_.append({ | ||
'id': key, | ||
'type:': 'AI_EOTask', | ||
'description': value['description'], | ||
'taskType': value['type'] | ||
}) | ||
|
||
return tasks_ | ||
|
||
def generate_providers(self, contact: dict) -> list: | ||
""" | ||
Generates 1..n providers | ||
:param contact: `dict` of contacts | ||
:returns: `list` of providers | ||
""" | ||
|
||
providers = [] | ||
|
||
for key, value in contact.items(): | ||
providers.append(value['organization']) | ||
|
||
return providers | ||
|
||
def generate_data(self, training_data: dict) -> dict: | ||
""" | ||
Generates training data objects from MCF training-data object | ||
:param training_data: `dict` of MCF training-data | ||
:returns: `list` of training data objects | ||
""" | ||
|
||
datas = [] | ||
|
||
for key, value in training_data.items(): | ||
data = { | ||
'type': 'AI_EO_TrainingData', | ||
'id': key, | ||
'dataURL': [value['url']], | ||
'labels': [] | ||
} | ||
for label in value['labels']: | ||
data['labels'].append({ | ||
'type': f"AI_{label['type']}Label", | ||
f"{label['type']}LabelURL": label['url'], | ||
f"{label['type']}LabelField": label['field'], | ||
}) | ||
|
||
datas.append(data) | ||
|
||
return datas |
Oops, something went wrong.