Skip to content

gasparian/target-likelihood-encoding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 

Repository files navigation

target-likelihood-encoding

Basic idea: let's use target values to compute statistics for every sub-category of categorical features according to this formula:

smoothed likelihood = (fold_target_stat * nrows + global_val * alpha) / (nrows + alpha)

where:

  • target_statistic - target statistic value across current fold,
  • global_val - target statistic value across all train set,
  • alpha - regularization value.

So if we have a rare subclass, it's target statistic will tend to the global value.

See the code for more info.

Usage

This kind of features leads to overfitting, so it must be created inside the cross-validation loop.

encoding = TLEncoding(n_splits=10, alpha=10, target='conversion')
encoding.fit(train)
tl_train = encoding.transform(train, mode='train')
tl_test = encoding.transform(test, mode='test')

Dependencies

  • python 3.6
  • numpy 1.12.1
  • pandas 0.20.1

Releases

No releases published

Packages

No packages published

Languages