forked from NVIDIA-AI-IOT/tf_to_trt_image_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 0aced03
Showing
29 changed files
with
4,024 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
cmake_minimum_required(VERSION 3.1) | ||
project(trt_image_classification) | ||
|
||
find_package(OpenCV REQUIRED) | ||
find_package(CUDA REQUIRED) | ||
|
||
include_directories(${CMAKE_SOURCE_DIR}) | ||
|
||
set(CUDA_NVCC_FLAGS --std=c++11) | ||
set(CMAKE_CXX_STANDARD 11) | ||
|
||
add_subdirectory(examples) | ||
add_subdirectory(src) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
Installation | ||
=== | ||
|
||
1. Flash the Jetson TX2 using JetPack 3.2. Be sure to install | ||
* CUDA 9.0 | ||
* OpenCV4Tegra | ||
* cuDNN | ||
* TensorRT 3.0 | ||
|
||
2. Install TensorFlow on Jetson TX2. | ||
1. ... | ||
2. ... | ||
|
||
3. Install uff converter on Jetson TX2. | ||
1. Download TensorRT 3.0.4 for Ubuntu 16.04 and CUDA 9.0 tar package from https://developer.nvidia.com/nvidia-tensorrt-download. | ||
2. Extract archive | ||
|
||
tar -xzf TensorRT-3.0.4.Ubuntu-16.04.3.x86_64.cuda-9.0.cudnn7.0.tar.gz | ||
|
||
3. Install uff python package using pip | ||
|
||
sudo pip install TensorRT-3.0.4/uff/uff-0.2.0-py2.py3-none-any.whl | ||
|
||
4. Clone and build this project | ||
|
||
``` | ||
git clone --recursive https://gitlab-master.nvidia.com/jwelsh/trt_image_classification.git | ||
cd trt_image_classification | ||
mkdir build | ||
cd build | ||
cmake .. | ||
make | ||
cd .. | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | ||
|
||
Redistribution and use in source and binary forms, with or without | ||
modification, are permitted provided that the following conditions | ||
are met: | ||
* Redistributions of source code must retain the above copyright | ||
notice, this list of conditions and the following disclaimer. | ||
* Redistributions in binary form must reproduce the above copyright | ||
notice, this list of conditions and the following disclaimer in the | ||
documentation and/or other materials provided with the distribution. | ||
* Neither the name of NVIDIA CORPORATION nor the names of its | ||
contributors may be used to endorse or promote products derived | ||
from this software without specific prior written permission. | ||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
TensorFlow->TensorRT Image Classification | ||
=== | ||
|
||
This contains examples, scripts and code related to image classification using TensorFlow models | ||
(from [here](https://github.com/tensorflow/models/tree/master/research/slim#Pretrained)) | ||
converted to TensorRT. Converting TensorFlow models to TensorRT offers significant performance | ||
gains on the Jetson TX2 as seen [below](#default_models). | ||
|
||
<a name="quick_start"></a> | ||
## Quick Start | ||
|
||
1. Follow the [installation guide](INSTALL.md). | ||
2. Download the pretrained TensorFlow models and example images. | ||
|
||
``` | ||
source scripts/download_models.sh | ||
source scripts/download_images.sh | ||
``` | ||
3. Convert the pretrained models to frozen graphs. | ||
``` | ||
python scripts/models_to_frozen_graphs.py | ||
``` | ||
4. Convert the frozen graphs to optimized TensorRT engines. | ||
``` | ||
python scripts/frozen_graphs_to_plans.py | ||
``` | ||
5. Execute the Inception V1 model on a single image. | ||
``` | ||
./build/examples/classify_image/classify_image data/images/gordon_setter.jpg data/plans/inception_v1.plan data/imagenet_labels_1001.txt input InceptionV1/Logits/SpatialSqueeze inception | ||
``` | ||
For more details, read through the examples [link](examples/README.md). | ||
<a name="default_models"></a> | ||
## Default Models | ||
The table below shows various details related to the default models ported from the TensorFlow | ||
slim model zoo. | ||
| <sub>Model</sub> | <sub>Input Size</sub> | <sub>TensorRT (TX2 / Half)</sub> | <sub>TensorRT (TX2 / Float)</sub> | <sub>TensorFlow (TX2 / Float)</sub> | <sub>Input Name</sub> | <sub>Output Name</sub> | <sub>Preprocessing Fn.</sub> | | ||
|--- |:---:|:---:|:---:|:---:|---|---|---| | ||
| <sub>inception_v1</sub> | <sub>224x224</sub> | <sub>7.98ms</sub> | <sub>12.8ms</sub> | <sub>27.6ms</sub> | <sub>input</sub> | <sub>InceptionV1/Logits/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>inception_v3</sub> | <sub>299x299</sub> | <sub>26.3ms</sub> | <sub>46.1ms</sub> | <sub>98.4ms</sub> | <sub>input</sub> | <sub>InceptionV3/Logits/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>inception_v4</sub> | <sub>299x299</sub> | <sub>52.1ms</sub> | <sub>88.2ms</sub> | <sub>176ms</sub> | <sub>input</sub> | <sub>InceptionV4/Logits/Logits/BiasAdd</sub> | <sub>inception</sub> | | ||
| <sub>inception_resnet_v2</sub> | <sub>299x299</sub> | <sub>53.0ms</sub> | <sub>98.7ms</sub> | <sub>168ms</sub> | <sub>input</sub> | <sub>InceptionResnetV2/Logits/Logits/BiasAdd</sub> | <sub>inception</sub> | | ||
| <sub>resnet_v1_50</sub> | <sub>224x224</sub> | <sub>15.7ms</sub> | <sub>27.1ms</sub> | <sub>63.9ms</sub> | <sub>input</sub> | <sub>resnet_v1_50/SpatialSqueeze</sub> | <sub>vgg</sub> | | ||
| <sub>resnet_v1_101</sub> | <sub>224x224</sub> | <sub>29.9ms</sub> | <sub>51.8ms</sub> | <sub>107ms</sub> | <sub>input</sub> | <sub>resnet_v1_101/SpatialSqueeze</sub> | <sub>vgg</sub> | | ||
| <sub>resnet_v1_152</sub> | <sub>224x224</sub> | <sub>42.6ms</sub> | <sub>78.2ms</sub> | <sub>157ms</sub> | <sub>input</sub> | <sub>resnet_v1_152/SpatialSqueeze</sub> | <sub>vgg</sub> | | ||
| <sub>resnet_v2_50</sub> | <sub>299x299</sub> | <sub>27.5ms</sub> | <sub>44.4ms</sub> | <sub>92.2ms</sub> | <sub>input</sub> | <sub>resnet_v2_50/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>resnet_v2_101</sub> | <sub>299x299</sub> | <sub>49.2ms</sub> | <sub>83.1ms</sub> | <sub>160ms</sub> | <sub>input</sub> | <sub>resnet_v2_101/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>resnet_v2_152</sub> | <sub>299x299</sub> | <sub>74.6ms</sub> | <sub>124ms</sub> | <sub>230ms</sub> | <sub>input</sub> | <sub>resnet_v2_152/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>mobilenet_v1_0p25_128</sub> | <sub>128x128</sub> | <sub>2.67ms</sub> | <sub>2.65ms</sub> | <sub>15.7ms</sub> | <sub>input</sub> | <sub>MobilenetV1/Logits/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>mobilenet_v1_0p5_160</sub> | <sub>160x160</sub> | <sub>3.95ms</sub> | <sub>4.00ms</sub> | <sub>16.9ms</sub> | <sub>input</sub> | <sub>MobilenetV1/Logits/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>mobilenet_v1_1p0_224</sub> | <sub>224x224</sub> | <sub>12.9ms</sub> | <sub>12.9ms</sub> | <sub>24.4ms</sub> | <sub>input</sub> | <sub>MobilenetV1/Logits/SpatialSqueeze</sub> | <sub>inception</sub> | | ||
| <sub>vgg_16</sub> | <sub>224x224</sub> | <sub>38.2ms</sub> | <sub>79.2ms</sub> | <sub>171ms</sub> | <sub>input</sub> | <sub>vgg_16/fc8/BiasAdd</sub> | <sub>vgg</sub> | | ||
<!--| inception_v2 | 224x224 | 10.3ms | 16.9ms | 38.3ms | input | InceptionV2/Logits/SpatialSqueeze | inception |--> | ||
<!--| vgg_19 | 224x224 | 97.3ms | OOM | input | vgg_19/fc8/BiasAdd | vgg |--> | ||
The times recorded include data transfer to GPU, network execution, and | ||
data transfer back from GPU. Time does not include preprocessing. | ||
See **scripts/test_tf.py**, **scripts/test_trt.py**, and **src/test/test_trt.cu** | ||
for implementation details. To reproduce the timings run | ||
``` | ||
python scripts/test_tf.py | ||
python scripts/test_trt.py | ||
``` | ||
The timing results will be located in **data/test_output_tf.txt** and **data/test_output_trt.txt**. Note | ||
that you must download and convert the models (as in the quick start) prior to running the benchmark scripts. |
Oops, something went wrong.