Skip to content

Commit

Permalink
Merge pull request #11 from ShuguangSun/ordtypes
Browse files Browse the repository at this point in the history
fix: order of types
  • Loading branch information
friendly authored Feb 13, 2022
2 parents 4433e33 + 676cc26 commit bc30b23
Showing 1 changed file with 43 additions and 45 deletions.
88 changes: 43 additions & 45 deletions R/CMHtest.R
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
# Cochran-Mantel-Haenszel tests for ordinal factors in contingency tables

# The code below follows Stokes, Davis & Koch, (2000).
# The code below follows Stokes, Davis & Koch, (2000).
# "Categorical Data Analysis using the SAS System", 2nd Ed.,
# pp 74--75, 92--101, 124--129.

# Ref: Landis, R. J., Heyman, E. R., and Koch, G. G. (1978),
# Average Partial Association in Three-way Contingency Tables:
# A Review and Discussion of Alternative Tests,
# International Statistical Review, 46, 237-254.
# Ref: Landis, R. J., Heyman, E. R., and Koch, G. G. (1978),
# Average Partial Association in Three-way Contingency Tables:
# A Review and Discussion of Alternative Tests,
# International Statistical Review, 46, 237-254.

# See: https://onlinecourses.science.psu.edu/stat504/book/export/html/90
# http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_freq_a0000000648.htm
Expand Down Expand Up @@ -62,7 +62,7 @@ function(formula, data = NULL, subset = NULL, na.action = NULL, ...)
}
dat <- margin.table(dat, ind)
}
CMHtest.default(dat,
CMHtest.default(dat,
strata = if (is.null(condind)) NULL else match(condnames, names(dimnames(dat))), ...)
} else {
m <- m[c(1, match(c("formula", "data", "subset", "na.action"), names(m), 0))]
Expand All @@ -76,7 +76,7 @@ function(formula, data = NULL, subset = NULL, na.action = NULL, ...)
}
}

CMHtest.default <- function(x, strata = NULL, rscores=1:R, cscores=1:C,
CMHtest.default <- function(x, strata = NULL, rscores=1:R, cscores=1:C,
types=c("cor", "rmeans", "cmeans", "general"),
overall=FALSE, details=overall, ...)
{
Expand Down Expand Up @@ -104,7 +104,7 @@ CMHtest.default <- function(x, strata = NULL, rscores=1:R, cscores=1:C,
# handle strata
if (!is.null(strata)) {
sn <- snames(x, strata)
res <- c(apply(x, strata, CMHtest2, rscores=rscores, cscores=cscores,
res <- c(apply(x, strata, CMHtest2, rscores=rscores, cscores=cscores,
types=types,details=details, ...))
# DONE: fix names if there are 2+ strata
names(res) <- sn
Expand All @@ -119,8 +119,8 @@ CMHtest.default <- function(x, strata = NULL, rscores=1:R, cscores=1:C,
}
return(res)
}
else CMHtest2(x, rscores=rscores, cscores=cscores,
types=types,details=details, ...)
else CMHtest2(x, rscores=rscores, cscores=cscores,
types=types,details=details, ...)
}

# handle two-way case, for a given stratum
Expand All @@ -130,14 +130,14 @@ CMHtest.default <- function(x, strata = NULL, rscores=1:R, cscores=1:C,
# DONE: modified to return all A matrices as a list
# DONE: cmh() moved outside

CMHtest2 <- function(x, stratum=NULL, rscores=1:R, cscores=1:C,
CMHtest2 <- function(x, stratum=NULL, rscores=1:R, cscores=1:C,
types=c("cor", "rmeans", "cmeans", "general"),
details=FALSE, ...) {

# left kronecker product
lkronecker <- function(x, y, make.dimnames=TRUE, ...)
kronecker(y, x, make.dimnames=make.dimnames, ...)

# midrank scores (modified ridits) based on row/column totals
midrank <- function (n) {
cs <- cumsum(n)
Expand All @@ -147,53 +147,52 @@ CMHtest2 <- function(x, stratum=NULL, rscores=1:R, cscores=1:C,
L <- length(d <- dim(x))
R <- d[1]
C <- d[2]

if (is.character(rscores) && rscores=="midrank") rscores <- midrank(rowSums(x))
if (is.character(cscores) && cscores=="midrank") cscores <- midrank(colSums(x))

nt <- sum(x)
pr <- rowSums(x) / nt
pc <- colSums(x) / nt

m <- as.vector(nt * outer(pr,pc)) # expected values under independence
n <- as.vector(x) # cell frequencies

V1 <- (diag(pr) - pr %*% t(pr))
V2 <- (diag(pc) - pc %*% t(pc))
V <- (nt^2/(nt-1)) * lkronecker(V1, V2, make.dimnames=TRUE)

if (length(types)==1 && types=="ALL") types <- c("general", "rmeans", "cmeans", "cor" )
types <- match.arg(types, several.ok=TRUE)
# handle is.null(rscores) etc here
if (is.null(rscores)) types <- setdiff(types, c("cmeans", "cor"))
if (is.null(cscores)) types <- setdiff(types, c("rmeans", "cor"))

table <- NULL
Amats <- list()
if("cor" %in% types) {
A <- lkronecker( t(rscores), t(cscores) )
df <- 1
table <- rbind(table, cmh(n, m, A, V, df))
Amats$cor <- A
}
if("rmeans" %in% types) {
A <- lkronecker( cbind(diag(R-1), rep(0, R-1)), t(cscores))
df <- R-1
table <- rbind(table, cmh(n, m, A, V, df))
Amats$rmeans <- A
}
if("cmeans" %in% types) {
A <- lkronecker( t(rscores), cbind(diag(C-1), rep(0, C-1)))
df <- C-1
table <- rbind(table, cmh(n, m, A, V, df))
Amats$cmeans <- A
}
if ("general" %in% types) {
A <- lkronecker( cbind(diag(R-1), rep(0, R-1)), cbind(diag(C-1), rep(0, C-1)))
df <- (R-1)*(C-1)
table <- rbind(table, cmh(n, m, A, V, df))
Amats$general <- A
Amats <- list()
for (type in types) {
if("cor" == type) {
A <- lkronecker( t(rscores), t(cscores) )
df <- 1
table <- rbind(table, cmh(n, m, A, V, df))
Amats$cor <- A
} else if("rmeans" == type) {
A <- lkronecker( cbind(diag(R-1), rep(0, R-1)), t(cscores))
df <- R-1
table <- rbind(table, cmh(n, m, A, V, df))
Amats$rmeans <- A
} else if("cmeans" == type) {
A <- lkronecker( t(rscores), cbind(diag(C-1), rep(0, C-1)))
df <- C-1
table <- rbind(table, cmh(n, m, A, V, df))
Amats$cmeans <- A
} else if ("general" == type) {
A <- lkronecker( cbind(diag(R-1), rep(0, R-1)), cbind(diag(C-1), rep(0, C-1)))
df <- (R-1)*(C-1)
table <- rbind(table, cmh(n, m, A, V, df))
Amats$general <- A
}
}

colnames(table) <- c("Chisq", "Df", "Prob")
rownames(table) <- types
Expand All @@ -206,7 +205,7 @@ CMHtest2 <- function(x, stratum=NULL, rscores=1:R, cscores=1:C,

# do overall test, from a computed CMHtest list
CMHtest3 <- function(object,
types=c("cor", "rmeans", "cmeans", "general"))
types=c("cor", "rmeans", "cmeans", "general"))
{
nstrat <- length(object) # number of strata

Expand Down Expand Up @@ -262,10 +261,10 @@ cmh <- function(n, m,A, V, df) {
print.CMHtest <- function(x, digits = max(getOption("digits") - 2, 3), ...) {
heading <- "Cochran-Mantel-Haenszel Statistics"
if (!is.null(x$names)) heading <- paste(heading, "for", paste(x$names, collapse=" by "))
if (!is.null(x$stratum)) heading <- paste(heading,
if (!is.null(x$stratum)) heading <- paste(heading,
ifelse(x$stratum=="ALL", "\n\tOverall tests, controlling for all strata", paste("\n\tin stratum", x$stratum)))
# TODO: determine score types (integer, midrank) for heading

df <- x$table
types <- rownames(df)
labels <- list(cor="Nonzero correlation", rmeans="Row mean scores differ",
Expand All @@ -275,7 +274,6 @@ print.CMHtest <- function(x, digits = max(getOption("digits") - 2, 3), ...) {
cat(heading,"\n\n")
print(df, digits=digits, ...)
cat("\n")

invisible(x)
}

0 comments on commit bc30b23

Please sign in to comment.