Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update observables_bs.py #258

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions flavio/physics/bdecays/bvll/observables_bs.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,31 @@ def bsvll_obs(function, q2, wc_obj, par, B, V, lep):
J_h = flavio.physics.bdecays.angular.angularcoeffs_h_v(phi, h, h_tilde, q2, mB, mV, mb, 0, ml, ml)
return function(y, J, J_bar, J_h)


def A_experiment_Bs(y, J, J_bar, J_h, i):
return A_experiment_num(y, J, J_bar, J_h, i)/SA_den_Bs(y, J, J_bar, J_h)

# numerator
def A_experiment_num_Bs(y, J, J_bar, J_h, i):
if i in [4, '6s', '6c', 7, 9]:
return -A_theory_num_Bs(y, J, J_bar, J_h, i)
return A_theory_num_Bs(y, J, J_bar, J_h, i)


def A_theory_Bs(y, J, J_bar, J_h, i):
r"""Angular CP asymmetry $A_i$ in the theory convention."""
return A_theory_num_Bs(y, J, J_bar, J_h, i)/SA_den_Bs(y, J, J_bar, J_h, i)

# numerator
def A_theory_num_Bs(y, J, J_bar, J_h, i):
return 1/(1-y**2) * (J[i] - J_bar[i]) - y/(1-y**2) * J_h[i]

# denominator of P_i observables
def P_den_Bs(y, J, J_bar, J_h):
return S_theory_num_Bs(y, J, J_bar, J_h,'2s')



def S_theory_num_Bs(y, J, J_bar, J_h, i):
# (42) of 1502.05509
flavio.citations.register("Descotes-Genon:2015hea")
Expand Down Expand Up @@ -141,12 +166,35 @@ def fct(wc_obj, par):
'FL': {'func_num': FL_num_Bs, 'tex': r'\overline{F_L}', 'desc': 'Time-averaged longitudinal polarization fraction'},
'S3': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 3), 'tex': r'\overline{S_3}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'S4': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 4), 'tex': r'\overline{S_4}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'S5': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 5), 'tex': r'\overline{S_5}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'S6c': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, '6c'), 'tex': r'\overline{S_6^c}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'S7': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 7), 'tex': r'\overline{S_7}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'S8': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 8), 'tex': r'\overline{S_8}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'S9': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 9), 'tex': r'\overline{S_9}', 'desc': 'Time-averaged, CP-averaged angular observable'},
'A3': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 3), 'tex': r'\overline{A_3}', 'desc': 'Angular CP asymmetry'},
'A4': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 4), 'tex': r'\overline{A_4}', 'desc': 'Angular CP asymmetry'},
'A5': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 5), 'tex': r'\overline{A_5}', 'desc': 'Angular CP asymmetry'},
'A6s': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, '6s'), 'tex': r'\overline{A_6^s}', 'desc': 'Angular CP asymmetry'},
'A7': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 7), 'tex': r'\overline{A_7}', 'desc': 'Angular CP asymmetry'},
'A8': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 8), 'tex': r'\overline{A_8}', 'desc': 'Angular CP asymmetry'},
'A9': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 9), 'tex': r'\overline{A_9}', 'desc': 'Angular CP asymmetry'},

}
_observables_p = {
'P1': {'func_num': lambda y, J, J_bar, J_h: S_experiment_num_Bs(y, J, J_bar, J_h, 3)/2., 'tex': r'P_1', 'desc': "CP-averaged \"optimized\" angular observable"},
'ATIm': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, 9)/2., 'tex': r'A_T^\text{Im}', 'desc': "Transverse CP asymmetry"},
'ATRe': {'func_num': lambda y, J, J_bar, J_h: A_experiment_num_Bs(y, J, J_bar, J_h, '6s')/4., 'tex': r'A_T^\text{Re}', 'desc': "Forward-Backward asymmetry"},



}
_hadr = {
'Bs->phi': {'tex': r"B_s\to \phi ", 'B': 'Bs', 'V': 'phi', },
'Bs->K*0': {'tex': r"B_s\to K^* ", 'B': 'Bs', 'V': 'K*0', },
}



for l in ['e', 'mu', 'tau']:
for M in _hadr.keys():

Expand All @@ -171,6 +219,25 @@ def fct(wc_obj, par):
_obs.add_taxonomy(_process_taxonomy)
Prediction(_obs_name, bsvll_obs_ratio_func(_observables[obs]['func_num'], SA_den_Bs, _hadr[M]['B'], _hadr[M]['V'], l))

for obs in sorted(_observables_p.keys()):

# binned angular observables
_obs_name = "<" + obs + ">("+M+l+l+")"
_obs = Observable(name=_obs_name, arguments=['q2min', 'q2max'])
_obs.set_description('Binned ' + _observables_p[obs]['desc'] + r" in $" + _hadr[M]['tex'] +_tex[l]+r"^+"+_tex[l]+"^-$")
_obs.tex = r"$\langle " + _observables_p[obs]['tex'] + r"\rangle(" + _hadr[M]['tex'] +_tex[l]+r"^+"+_tex[l]+"^-)$"
_obs.add_taxonomy(_process_taxonomy)
Prediction(_obs_name, bsvll_obs_int_ratio_func(_observables_p[obs]['func_num'], P_den_Bs, _hadr[M]['B'], _hadr[M]['V'], l))

# differential angular observables
_obs_name = obs + "("+M+l+l+")"
_obs = Observable(name=_obs_name, arguments=['q2'])
_obs.set_description(_observables_p[obs]['desc'][0].capitalize() + _observables_p[obs]['desc'][1:] + r" in $" + _hadr[M]['tex'] +_tex[l]+r"^+"+_tex[l]+"^-$")
_obs.tex = r"$" + _observables_p[obs]['tex'] + r"(" + _hadr[M]['tex'] +_tex[l]+r"^+"+_tex[l]+"^-)$"
_obs.add_taxonomy(_process_taxonomy)
Prediction(_obs_name, bsvll_obs_ratio_func(_observables_p[obs]['func_num'], P_den_Bs, _hadr[M]['B'], _hadr[M]['V'], l))


# binned branching ratio
_obs_name = "<dBR/dq2>("+M+l+l+")"
_obs = Observable(name=_obs_name, arguments=['q2min', 'q2max'])
Expand Down
Loading