-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #391 from firedrakeproject/Numericalintegrator
PR #391: add numerical integrator
- Loading branch information
Showing
3 changed files
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import numpy as np | ||
|
||
|
||
class NumericalIntegral(object): | ||
""" | ||
A class for numerically evaluating and tabulating some 1D integral. | ||
Args: | ||
lower_bound(float): lower bound of integral | ||
upper_bound(float): upper bound of integral | ||
num_points(float): number of points to tabulate integral at | ||
""" | ||
def __init__(self, lower_bound, upper_bound, num_points=500): | ||
|
||
# if upper_bound <= lower_bound: | ||
# raise ValueError('lower_bound must be lower than upper_bound') | ||
self.x = np.linspace(lower_bound, upper_bound, num_points) | ||
self.x_double = np.linspace(lower_bound, upper_bound, 2*num_points-1) | ||
self.lower_bound = lower_bound | ||
self.upper_bound = upper_bound | ||
self.num_points = num_points | ||
self.tabulated = False | ||
|
||
def tabulate(self, expression): | ||
""" | ||
Tabulate some integral expression using Simpson's rule. | ||
Args: | ||
expression (func): a function representing the integrand to be | ||
evaluated. should take a numpy array as an argument. | ||
""" | ||
|
||
self.cumulative = np.zeros_like(self.x) | ||
self.interval_areas = np.zeros(len(self.x)-1) | ||
# Evaluate expression in advance to make use of numpy optimisation | ||
# We evaluate at the tabulation points and the midpoints of the intervals | ||
f = expression(self.x_double) | ||
|
||
# Just do Simpson's rule for evaluating area of each interval | ||
self.interval_areas = ((self.x[1:] - self.x[:-1]) / 6.0 | ||
* (f[2::2] + 4.0 * f[1::2] + f[:-1:2])) | ||
|
||
# Add the interval areas together to create cumulative integral | ||
for i in range(self.num_points - 1): | ||
self.cumulative[i+1] = self.cumulative[i] + self.interval_areas[i] | ||
|
||
self.tabulated = True | ||
|
||
def evaluate_at(self, points): | ||
""" | ||
Evaluates the integral at some point using linear interpolation. | ||
Args: | ||
points (float or iter) the point value, or array of point values to | ||
evaluate the integral at. | ||
Return: | ||
returns the numerical approximation of the integral from lower | ||
bound to point(s) | ||
""" | ||
# Do linear interpolation from tabulated values | ||
if not self.tabulated: | ||
raise RuntimeError( | ||
'Integral must be tabulated before we can evaluate it at a point') | ||
|
||
return np.interp(points, self.x, self.cumulative) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
""" | ||
Tests the numerical integrator. | ||
""" | ||
from gusto import NumericalIntegral | ||
from numpy import sin, pi | ||
import pytest | ||
|
||
|
||
def quadratic(x): | ||
return x**2 | ||
|
||
|
||
def sine(x): | ||
return sin(x) | ||
|
||
|
||
@pytest.mark.parametrize("integrand_name", ["quadratic", "sine"]) | ||
def test_numerical_integrator(integrand_name): | ||
if integrand_name == "quadratic": | ||
integrand = quadratic | ||
upperbound = 3 | ||
answer = 9 | ||
elif integrand_name == "sine": | ||
integrand = sine | ||
upperbound = pi | ||
answer = 2 | ||
else: | ||
raise ValueError(f'{integrand_name} integrand not recognised') | ||
numerical_integral = NumericalIntegral(0, upperbound) | ||
numerical_integral.tabulate(integrand) | ||
area = numerical_integral.evaluate_at(upperbound) | ||
err_tol = 1e-10 | ||
assert abs(area-answer) < err_tol, \ | ||
f'numerical integrator is incorrect for {integrand_name} function' |