Skip to content

Commit

Permalink
Website build
Browse files Browse the repository at this point in the history
  • Loading branch information
dham committed Jan 10, 2024
1 parent 203a5b2 commit 8266e0d
Show file tree
Hide file tree
Showing 61 changed files with 1,728 additions and 818 deletions.
2 changes: 1 addition & 1 deletion .buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 082ecbcbbeeaf13a176965b05301a940
config: d471f9dd86ab3fe8170a556f9940aa9c
tags: 645f666f9bcd5a90fca523b33c5a78b7
124 changes: 108 additions & 16 deletions 1_quadrature.html

Large diffs are not rendered by default.

86 changes: 47 additions & 39 deletions 2_finite_elements.html

Large diffs are not rendered by default.

113 changes: 19 additions & 94 deletions 3_meshes.html
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />

<title>3. Meshes &#8212; Finite element course 2021.0 documentation</title>
<title>3. Meshes &#8212; Finite element course 2024.0 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/fenics.css" />
<link rel="stylesheet" type="text/css" href="_static/proof.css" />
Expand Down Expand Up @@ -74,8 +74,10 @@ <h1><span class="section-number">3. </span>Meshes<a class="headerlink" href="#me
finite element method.</p>
<section id="mesh-entities">
<h2><span class="section-number">3.1. </span>Mesh entities<a class="headerlink" href="#mesh-entities" title="Permalink to this headline"></a></h2>
<p>A mesh is composed of <em>topological entities</em>, such as vertices, edges,
polygons and polyhedra.</p>
<p>Like a cell, a mesh is composed of <em>topological entities</em>, such as vertices,
edges, polygons and polyhedra. The distinction is that a mesh is made of
potentially many cells, and a commensurate number of lower-dimensional
entities.</p>
<div class="proof proof-type-definition" id="id3">

<div class="proof-title">
Expand All @@ -89,97 +91,20 @@ <h2><span class="section-number">3.1. </span>Mesh entities<a class="headerlink"
immersed in <span class="math notranslate nohighlight">\(\mathbb{R}^3\)</span>) so the topological dimension of the
mesh will always match the geometric dimension of space in which we
are working, so we will simply refer to the <em>dimension</em> of the mesh.</p>
<div class="proof proof-type-definition" id="id4">

<div class="proof-title">
<span class="proof-type">Definition 3.27</span>

</div><div class="proof-content">
<p>A topological entity of <em>codimension</em> <span class="math notranslate nohighlight">\(n\)</span> is a topological
entity of dimension <span class="math notranslate nohighlight">\(d-n\)</span> where <span class="math notranslate nohighlight">\(d\)</span> is the dimension of the
mesh.</p>
</div></div><p>Armed with these definitions we are able to define names for
topological entities of various dimension and codimension:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 35%" />
<col style="width: 29%" />
<col style="width: 35%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>entity name</p></th>
<th class="head"><p>dimension</p></th>
<th class="head"><p>codimension</p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>vertex</p></td>
<td><p>0</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>edge</p></td>
<td><p>1</p></td>
<td></td>
</tr>
<tr class="row-even"><td><p>face</p></td>
<td><p>2</p></td>
<td></td>
</tr>
<tr class="row-odd"><td><p>facet</p></td>
<td></td>
<td><p>1</p></td>
</tr>
<tr class="row-even"><td><p>cell</p></td>
<td></td>
<td><p>0</p></td>
</tr>
</tbody>
</table>
<p>The cells of a mesh can be polygons or polyhedra of any shape, however
in this course we will restrict ourselves to meshes whose cells are
intervals or triangles. The only other two-dimensional cells
frequently employed are quadrilaterals.</p>
<p>The topological entities of each dimension will be given unique
numbers in order that degrees of freedom can later be associated with
them. We will identify topological entities by an index pair <span class="math notranslate nohighlight">\((d, i)\)</span>
where <span class="math notranslate nohighlight">\(i\)</span> is the index of the entity within the set of <span class="math notranslate nohighlight">\(d\)</span>-dimensional
entities. For example, entity <span class="math notranslate nohighlight">\((0, 10)\)</span> is vertex number 10, and
entity <span class="math notranslate nohighlight">\((1, 10)\)</span> is edge 10. <a class="reference internal" href="#figmesh"><span class="std std-numref">Fig. 3.1</span></a> shows an example
mesh with the topological entities labelled.</p>
<figure class="align-default" id="id5">
<p>The numbering of mesh entities is similar to that of cell entities, except that
the indices range over all of the entities of that dimension in the mesh. For
example, entity <span class="math notranslate nohighlight">\((0, 10)\)</span> is vertex number 10, and entity <span class="math notranslate nohighlight">\((1, 10)\)</span> is edge 10.
<a class="reference internal" href="#figmesh"><span class="std std-numref">Fig. 3.1</span></a> shows an example mesh with the topological entities labelled.</p>
<figure class="align-default" id="id4">
<span id="figmesh"></span><a class="reference internal image-reference" href="_images/mesh.svg"><img alt="_images/mesh.svg" src="_images/mesh.svg" width="80%" /></a>
<figcaption>
<p><span class="caption-number">Fig. 3.1 </span><span class="caption-text">A triangular mesh showing labelled topological entities: vertices
(black), edges (red), and cells (blue).</span><a class="headerlink" href="#id5" title="Permalink to this image"></a></p>
</figcaption>
</figure>
</section>
<section id="reference-cell-entities">
<h2><span class="section-number">3.2. </span>Reference cell entities<a class="headerlink" href="#reference-cell-entities" title="Permalink to this headline"></a></h2>
<p>The reference cells similarly have locally numbered topological
entities, these are shown in <a class="reference internal" href="#figreferenceentities"><span class="std std-numref">Fig. 3.2</span></a>. The
numbering is a matter of convention: that adopted here is that edges
share the number of the opposite vertex. The orientation of the edges
is also shown, this is always from the lower numbered vertex to the
higher numbered one.</p>
<p>The <a class="reference internal" href="fe_utils.html#fe_utils.reference_elements.ReferenceCell" title="fe_utils.reference_elements.ReferenceCell"><code class="xref py py-class docutils literal notranslate"><span class="pre">ReferenceCell</span></code></a> class stores the
local topology of the reference cell. <a class="reference external" href="_modules/fe_utils/reference_elements.html">Read the source</a> and ensure that you
understand the way in which this information is encoded.</p>
<p>The following animation of the numbering of the topological entities
on the reference cell may help in understanding this.</p>
<div class="youtube docutils container">
<div class="video_wrapper" style="">
<iframe allowfullscreen="true" src="https://www.youtube.com/embed/7A7JU7bGw0E?modestbranding=1;controls=0;rel=0" style="border: 0; height: 367px; width: 600px">
</iframe></div></div>
<figure class="align-default" id="id6">
<span id="figreferenceentities"></span><a class="reference internal image-reference" href="_images/entities.svg"><img alt="_images/entities.svg" src="_images/entities.svg" width="50%" /></a>
<figcaption>
<p><span class="caption-number">Fig. 3.2 </span><span class="caption-text">Local numbering and orientation of the reference entities.</span><a class="headerlink" href="#id6" title="Permalink to this image"></a></p>
(black), edges (red), and cells (blue).</span><a class="headerlink" href="#id4" title="Permalink to this image"></a></p>
</figcaption>
</figure>
</section>
<section id="adjacency">
<span id="secadjacency"></span><h2><span class="section-number">3.3. </span>Adjacency<a class="headerlink" href="#adjacency" title="Permalink to this headline"></a></h2>
<h2><span class="section-number">3.2. </span>Adjacency<a class="headerlink" href="#adjacency" title="Permalink to this headline"></a></h2>
<details class="sphinx-bs dropdown card mb-3">
<summary class="summary-title card-header">
A video recording of the following material is available here.<div class="summary-down docutils">
Expand All @@ -202,10 +127,10 @@ <h2><span class="section-number">3.2. </span>Reference cell entities<a class="he
the cell itself. One of the roles of the mesh is therefore to provide
a lookup facility for the lower-dimensional mesh entities adjacent to
a given cell.</p>
<div class="proof proof-type-definition" id="id7">
<div class="proof proof-type-definition" id="id5">

<div class="proof-title">
<span class="proof-type">Definition 3.28</span>
<span class="proof-type">Definition 3.27</span>

</div><div class="proof-content">
<p>Given a mesh <span class="math notranslate nohighlight">\(M\)</span>, then for each <span class="math notranslate nohighlight">\(\dim(M) \geq d_1 &gt; d_2 \geq 0\)</span>
Expand All @@ -227,10 +152,10 @@ <h2><span class="section-number">3.2. </span>Reference cell entities<a class="he
<p>A consequence of this convention is that the global orientation of
all the entities making up a cell also matches their local
orientation.</p>
</div></div><div class="proof proof-type-example" id="id8">
</div></div><div class="proof proof-type-example" id="id6">

<div class="proof-title">
<span class="proof-type">Example 3.29</span>
<span class="proof-type">Example 3.28</span>

</div><div class="proof-content">
<p>In the mesh shown in <a class="reference internal" href="#figmesh"><span class="std std-numref">Fig. 3.1</span></a> we have:</p>
Expand All @@ -242,7 +167,7 @@ <h2><span class="section-number">3.2. </span>Reference cell entities<a class="he
<p>Edges 11, 5, and 9 are local edges 0, 1, and 2 of cell 3.</p>
</div></div></section>
<section id="mesh-geometry">
<h2><span class="section-number">3.4. </span>Mesh geometry<a class="headerlink" href="#mesh-geometry" title="Permalink to this headline"></a></h2>
<h2><span class="section-number">3.3. </span>Mesh geometry<a class="headerlink" href="#mesh-geometry" title="Permalink to this headline"></a></h2>
<details class="sphinx-bs dropdown card mb-3">
<summary class="summary-title card-header">
A video recording of the following material is available here.<div class="summary-down docutils">
Expand All @@ -268,7 +193,7 @@ <h2><span class="section-number">3.4. </span>Mesh geometry<a class="headerlink"
vector-valued piecewise linear finite element space.</p>
</section>
<section id="a-mesh-implementation-in-python">
<h2><span class="section-number">3.5. </span>A mesh implementation in Python<a class="headerlink" href="#a-mesh-implementation-in-python" title="Permalink to this headline"></a></h2>
<h2><span class="section-number">3.4. </span>A mesh implementation in Python<a class="headerlink" href="#a-mesh-implementation-in-python" title="Permalink to this headline"></a></h2>
<details class="sphinx-bs dropdown card mb-3">
<summary class="summary-title card-header">
A video recording of the following material is available here.<div class="summary-down docutils">
Expand Down Expand Up @@ -320,7 +245,7 @@ <h2><span class="section-number">3.5. </span>A mesh implementation in Python<a c
<div class="clearer"></div>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2014-2021, David A. Ham and Colin J. Cotter.
&#169; Copyright 2014-2024, David A. Ham and Colin J. Cotter.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
</div>
</body>
Expand Down
Loading

0 comments on commit 8266e0d

Please sign in to comment.