generated from feelpp/feelpp-project
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
145 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
|
||
import json | ||
import pandas as pd | ||
import plotly.graph_objects as go | ||
import plotly.express as px | ||
|
||
print(pd.__version__) | ||
|
||
# Replace 'your_file.json' with the path to your JSON file | ||
# file_path = 'docs/modules/meluxina/pages/20231209/kub_scenario0.json' | ||
|
||
|
||
class Report: | ||
""" | ||
Class to load the reframe report file, a json file, and extract the data | ||
:param file_path: path to the json file | ||
:type file_path: str | ||
""" | ||
|
||
def __init__(self, file_path, ref_speedup=128): | ||
self.file_path = file_path | ||
self.data = None | ||
self.load() | ||
|
||
df = pd.DataFrame(self.data['runs'][0]['testcases'][0:]) | ||
df['num_tasks'] = df['check_vars'].apply(lambda x: x['num_tasks']) | ||
df['num_tasks'] = df['num_tasks'].astype(int) | ||
self.df_perf = pd.DataFrame() | ||
for k, t in enumerate(df['num_tasks'].unique()): | ||
for i in df['perfvars'][k]: | ||
self.df_perf = pd.concat([self.df_perf, pd.DataFrame( | ||
[{'num_tasks': t, 'name': i['name'], 'value': i['value']}])], ignore_index=True) | ||
|
||
self.df_perf['name'] = self.df_perf['name'].astype(str) | ||
self.df_perf['value'] = self.df_perf['value'].astype(float) | ||
self.df_perf['num_tasks'] = self.df_perf['num_tasks'].astype(int) | ||
|
||
# build a dataframe for the speedup with respect to 'ref_speedup' tasks | ||
self.df_speedup = pd.DataFrame() | ||
ref = self.df_perf[self.df_perf['num_tasks'] == ref_speedup] | ||
print(ref.to_markdown()) | ||
|
||
for k, t in enumerate(df['num_tasks'].unique()): | ||
for i in df['perfvars'][k]: | ||
self.df_speedup = pd.concat([self.df_speedup, pd.DataFrame( | ||
[{'num_tasks': t, 'name': i['name'], 'value': ref['value'].values[2]/i['value']}])], ignore_index=True) | ||
# the optimal speedup is ref_speedup | ||
self.df_speedup['optimal'] = self.df_speedup['num_tasks'].apply( | ||
lambda x: x/ref_speedup) | ||
self.df_speedup['half optimal'] = self.df_speedup['num_tasks'].apply( | ||
lambda x: x/(2*ref_speedup)) | ||
|
||
def load(self): | ||
with open(self.file_path, 'r') as file: | ||
self.data = json.load(file) | ||
|
||
def extractSessionInfo(self): | ||
""" | ||
Extracts and returns session information from the JSON data. | ||
""" | ||
if 'session_info' in self.data: | ||
session = self.data['session_info'] | ||
return { | ||
'cmdline': session.get('cmdline', 'N/A'), | ||
'config_files': session.get('config_files', []), | ||
'data_version': session.get('data_version', 'N/A'), | ||
'hostname': session.get('hostname', 'N/A'), | ||
'log_files': session.get('log_files', []), | ||
'prefix_output': session.get('prefix_output', 'N/A'), | ||
'prefix_stage': session.get('prefix_stage', 'N/A'), | ||
'user': session.get('user', 'N/A'), | ||
'version': session.get('version', 'N/A'), | ||
'workdir': session.get('workdir', 'N/A'), | ||
'time_start': session.get('time_start', 'N/A'), | ||
'time_end': session.get('time_end', 'N/A'), | ||
'time_elapsed': session.get('time_elapsed', 0), | ||
'num_cases': session.get('num_cases', 0), | ||
'num_failures': session.get('num_failures', 0) | ||
} | ||
else: | ||
return {} | ||
|
||
def printSessionInfo(self): | ||
for key, value in self.extractSessionInfo().items(): | ||
print(f"{key}: {value}") | ||
|
||
def data(self): | ||
return self.data | ||
|
||
def testcases(self): | ||
return self.data['runs'][0]['testcases'] | ||
|
||
def perfvars(self): | ||
return self.data['runs'][0]['testcases'][0]['perfvars'] | ||
|
||
def check_vars(self): | ||
return self.data['runs'][0]['testcases'][0]['check_vars'] | ||
|
||
def perf(self): | ||
return self.df_perf | ||
|
||
def speedup(self): | ||
return self.df_speedup | ||
|
||
def plotSteps(self): | ||
fig = go.Figure() | ||
for i in self.df_perf['name'].unique(): | ||
fig.add_trace(go.Scatter(x=self.df_perf[self.df_perf['name'] == i]['num_tasks'], | ||
y=self.df_perf[self.df_perf['name'] == i]['value'], name=i, mode='lines+markers')) | ||
fig.update_layout(yaxis_type="log") | ||
return fig | ||
|
||
def plotPerformanceByStep(self): | ||
fig = go.Figure() | ||
for t in sorted(self.df_perf['num_tasks'].unique(), reverse=False): | ||
df_task = self.df_perf[self.df_perf['num_tasks'] == t] | ||
fig.add_trace( | ||
go.Bar(x=df_task['name'], y=df_task['value'], name=str(t))) | ||
|
||
fig.update_layout(barmode='group', xaxis_tickangle=-45, | ||
title='Performance of tasks', yaxis_type='log') | ||
return fig | ||
|
||
def plotPerformanceByTask(self): | ||
fig = px.bar(self.df_perf, x="num_tasks", y="value", | ||
color="name", barmode="group", log_y=True, log_x=True) | ||
return fig | ||
|
||
def plotSpeedup(self): | ||
fig = go.Figure() | ||
for t in self.df_speedup['name'].unique(): | ||
df_task = self.df_speedup[self.df_speedup['name'] == t] | ||
fig.add_trace(go.Scatter(x=df_task['num_tasks'], y=df_task['value'], | ||
mode='lines+markers', name=f'{df_task["name"].values[0]}')) | ||
|
||
fig.add_trace(go.Scatter( | ||
x=self.df_speedup['num_tasks'], y=self.df_speedup['optimal'], mode='lines', name='optimal')) | ||
fig.add_trace(go.Scatter( | ||
x=self.df_speedup['num_tasks'], y=self.df_speedup['half optimal'], mode='lines', name='half optimal')) | ||
fig.add_trace(go.Scatter( | ||
x=self.df_speedup['num_tasks'], y=self.df_speedup['optimal'], fill='tonexty', mode='none', name='optimal')) | ||
fig.layout.update(title='Speedup') | ||
return fig |