- Python https://www.python.org/downloads/windows/
- Git Bash https://git-scm.com/downloads
- Conda https://conda.io/projects/conda/en/latest/user-guide/install/windows.html
- masuk ke C:\Users[User]\anaconda3\envs
- klik kanan, open Git Bash
- conda create -n nama_project_atau_folder
cd nama_project_atau_folder
code .
untuk membuka di vscode (code editor)- [CTRL + `] untuk membuka terminal di vscode
conda activate nama_project_atau_folder
untuk mengaktifkan virtual environment python di terminal vscode- sekarang, sudah bisa
pip install
,python
, dan lain-lain
- I'm using miniforge now because it's more recommended: https://github.com/conda-forge/miniforge
- Conda tutorial: https://kirenz.github.io/codelabs/codelabs/miniforge-setup/#3
- conda create -n <PROJECT_NAME>
- conda activate
- conda activate <PROJECT_NAME>
- conda list
- Now take a look at all the modules in your <PROJECT_NAME> environment
- conda deactivate
- conda install <PACKAGE_NAME>
- alternative: pip install <PACKAGE_NAME>
- Installing
- brew install miniforge
- 404 Loading forever bug https://stackoverflow.com/ques
- conda install -c conda-forge nbstripout
- nbstripout filename.ipynb.
- Make sure that there is no whitespace in the filenam
pip3 install package_name - - Using with [[TensorFlow]]: https://github.com/adis
This is a set of instructions on how to use Keras, from setting up the conda environment until getting results from python code with keras.
The complete documentation on how we could use conda is here https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/
conda create -n <folder_name> tensorflow
cd into folder
conda activate <folder_name>
Install your dependencies (tensorflow, keras)
pip install tensorflow
pip install keras
If you use conda, you can install it with:
conda install -c conda-forge jupyterlab
If you use pip, you can install it with:
pip install jupyterlab
If installing using pip install --user, you must add the user-level bin directory to your PATH environment variable in order to launch jupyter lab. If you are using a Unix derivative (FreeBSD, GNU / Linux, OS X), you can achieve this by using export PATH="$HOME/.local/bin:$PATH" command.
Run jupyter lab with
jupyter-lab
https://keras.io/getting_started/intro_to_keras_for_researchers/
Here are some python project examples: