Skip to content

Commit

Permalink
Merge pull request #105 from haiszhu/dev-helmkernsplit-redo
Browse files Browse the repository at this point in the history
laplace and helmholtz kernel split quadrature
  • Loading branch information
mrachh authored Oct 19, 2024
2 parents 57807af + b7e0433 commit 3fe062e
Show file tree
Hide file tree
Showing 9 changed files with 456 additions and 55 deletions.
151 changes: 124 additions & 27 deletions chunkie/+chnk/pquadwts.m
Original file line number Diff line number Diff line change
@@ -1,56 +1,78 @@
function mat = pquadwts(r,d,n,d2,ct,bw,j,...
rt,dt,nt,d2t,kern,opdims,t,w,opts,intp_ab,intp)
%CHNK.INTERPQUADWTS product integration for interaction of kernel on chunk
function [varargout] = pquadwts(r,d,n,d2,wts,j,...
rt,t,w,opts,intp_ab,intp,types)
%CHNK.pquadwts product integration for interaction of kernel on chunk
% at targets
%
% WARNING: this routine is not designed to be user-callable and assumes
% a lot of precomputed values as input
%
% Syntax: mat = interpquadwts(r,d,d2,h,ct,bw,j, ...
% rt,dt,d2t,kern,opdims,t,w,opts)
% Syntax: [varargout] = pquadwts(r,d,n,d2,wts,j,...
% rt,t,w,opts,intp_ab,intp,types)
%
% Input:
% r - chnkr nodes
% d - chnkr derivatives at nodes
% n - chnkr normals at nodes
% d2 - chnkr 2nd derivatives at nodes
% ct - Legendre nodes at order of chunker
% bw - barycentric interpolation weights for Legendre nodes at order of
% chunker
% wts - chnkr integration weights for smooth functions
% j - chunk of interest
% rt,dt,nt,d2t - position, derivative, normal,second derivative of select
% target points. if any are not used by kernel (or not well
% defined, e.g. when not on curve), a dummy array
% of the appropriate size should be supplied
% kern - kernel function of form kern(srcinfo,targinfo)
% opdims - dimensions of kernel
% t - (Legendre) integration nodes for adaptive integration
% w - integration nodes for adaptive integrator (t and w not necessarily
% same order as chunker order)
% rt - position of target points. if any are not used by kernel
% (or not well defined, e.g. when not on curve), a
% dummy array of the appropriate size should be supplied
% t - (Legendre) integration nodes
% w - (Legendre) integration weights
% opts - opts.side
% intp_ab - panel endpoints interpolation matrix
% types - specified singularity types
% [0 0 0 0] - smooth quadr
% [1 0 0 0] - log singularity
% [0 0 -1 0] - cauchy singularity
% each [a, b, c, d]
% corresponds to (log(z-w))^a (log(zc-wc))^b (z-w)^c (zc-wc)^d
%
% Output
% mat - integration matrix
% varargout - integration matrices for specified singularity types
%

% Helsing-Ojala (interior/exterior?)

xlohi = intp_ab*(r(1,:,j)'+1i*r(2,:,j)'); % panel end points
r_i = intp*(r(1,:,j)'+1i*r(2,:,j)'); % upsampled panel
d_i = (intp*(d(1,:,j)'+1i*d(2,:,j)')); % r'
d2_i = (intp*(d2(1,:,j)'+1i*d2(2,:,j)')); % r''
d_i = (intp*(d(1,:,j)'+1i*d(2,:,j)')); % r'
d2_i = (intp*(d2(1,:,j)'+1i*d2(2,:,j)')); % r''
wts_i = wts(:,j)'; %
sp = abs(d_i); tang = d_i./sp; % speed, tangent
n_i = -1i*tang; % normal
cur = -real(conj(d2_i).*n_i)./sp.^2; % curvature
wxp_i = w.*d_i; % complex speed weights (Helsing's wzp)
wxp_i = w.*d_i; % complex speed weights (Helsing's wzp)

varargout = cell(size(types));

% [As, Ad, A1, A2, A3, A4] = SDspecialquad(struct('x',rt(1,:)' + 1i*rt(2,:)'),...
% struct('x',r_i,'nx',n_i,'wxp',wxp_i),xlohi(1),xlohi(2),opts.side);
[As, Ad] = SDspecialquad(struct('x',rt(1,:)' + 1i*rt(2,:)'),...
struct('x',r_i,'nx',n_i,'wxp',wxp_i),xlohi(1),xlohi(2),opts.side);
As = As*intp;
Ad = Ad*intp;

mat_ho_slp = Sspecialquad(struct('x',rt(1,:)' + 1i*rt(2,:)'),...
struct('x',r_i,'nx',n_i,'wxp',wxp_i),xlohi(1),xlohi(2),'e');
mat_ho_dlp = Dspecialquad(struct('x',rt(1,:)' + 1i*rt(2,:)'),...
struct('x',r_i,'nx',n_i,'wxp',wxp_i),xlohi(1),xlohi(2),'e');
for j = 1:length(types)
type0 = types{j};

mat = (mat_ho_slp+real(mat_ho_dlp))*intp; % depends on kern, different mat1?
if (all(type0 == [0 0 0 0]))
varargout{j} = ones(size(rt,2),numel(wts_i)).*wts_i;
elseif (all(type0 == [1 0 0 0]))
% varargout{j} = Sspecialquad(struct('x',rt(1,:)' + 1i*rt(2,:)'),...
% struct('x',r_i,'nx',n_i,'wxp',wxp_i),xlohi(1),xlohi(2),opts.side)*intp;
varargout{j} = As;
elseif (all(type0 == [0 0 -1 0]))
% varargout{j} = Dspecialquad(struct('x',rt(1,:)' + 1i*rt(2,:)'),...
% struct('x',r_i,'nx',n_i,'wxp',wxp_i),xlohi(1),xlohi(2),opts.side)*intp;
varargout{j} = Ad;
else
error("split panel quad type " + join(string([1 2 3]),",") + " not available");
end

end
end

function [A, A1, A2] = Sspecialquad(t,s,a,b,side)
% SSPECIALQUAD - SLP val+grad close-eval Helsing "special quadrature" matrix
Expand All @@ -66,6 +88,7 @@
% Efficient only if multiple targs, since O(p^3).
% See Helsing-Ojala 2008 (special quadr Sec 5.1-2), Helsing 2009 mixed (p=16),
% and Helsing's tutorial demo11b.m LGIcompRecFAS()
% See https://github.com/ahbarnett/BIE2D/blob/master/panels/LapSLP_closepanel.m
if nargin<5, side = 'i'; end % interior or exterior
zsc = (b-a)/2; zmid = (b+a)/2; % rescaling factor and midpoint of src segment
y = (s.x-zmid)/zsc; x = (t.x-zmid)/zsc; % transformed src nodes, targ pts
Expand Down Expand Up @@ -146,6 +169,7 @@
% Efficient only if multiple targs, since O(p^3).
% See Helsing-Ojala 2008 (special quadr Sec 5.1-2), Helsing 2009 mixed (p=16),
% and Helsing's tutorial demo11b.m M1IcompRecFS()
% See https://github.com/ahbarnett/BIE2D/blob/master/panels/LapDLP_closepanel.m
if nargin<5, side = 'i'; end % interior or exterior
zsc = (b-a)/2; zmid = (b+a)/2; % rescaling factor and midpoint of src segment
y = (s.x-zmid)/zsc; x = (t.x-zmid)/zsc; % transformed src nodes, targ pts
Expand Down Expand Up @@ -203,3 +227,76 @@
end
end
end

function [As, A, A1, A2, A3, A4] = SDspecialquad(t,s,a,b,side)
% S+D together... (with Sn) should be the same as requesting S or D
% more expensive if request Dn...
% https://github.com/ahbarnett/BIE2D/blob/master/panels/LapDLP_closepanel.m
%%% d = 100;
zsc = (b-a)/2; zmid = (b+a)/2; % rescaling factor and midpoint of src segment
y = (s.x-zmid)/zsc; x = (t.x-zmid)/zsc; % transformed src nodes, targ pts
%figure; plot(x,'.'); hold on; plot(y,'+-'); plot([-1 1],[0 0],'ro'); % debug
N = numel(x); % # of targets
p = numel(s.x); % assume panel order is # nodes
if N*p==0
As = 0; A = 0; A1=0; A2=0;
return
end
c = (1-(-1).^(1:p))./(1:p); % Helsing c_k, k = 1..p.
V = ones(p,p); for k=2:p, V(:,k) = V(:,k-1).*y; end % Vandermonde mat @ nodes
P = zeros(p+1,N); % Build P, Helsing's p_k vectorized on all targs...
d = 1.1; inr = abs(x)<=d; ifr = abs(x)>d; % near & far treat separately
%gam = 1i;
gam = exp(1i*pi/4); % smaller makes cut closer to panel. barnett 4/17/18
if side == 'e', gam = conj(gam); end % note gam is a phase, rots branch cut
P(1,:) = log(gam) + log((1-x)./(gam*(-1-x))); % init p_1 for all targs int

% upwards recurrence for near targets, faster + more acc than quadr...
% (note rotation of cut in log to -Im; so cut in x space is lower unit circle)
if N>1 || (N==1 && inr==1) % Criterion added by Bowei Wu 03/05/15 to ensure inr not empty
for k=1:p
P(k+1,inr) = x(inr).'.*P(k,inr) + c(k);
end % recursion for p_k
end
% fine quadr (no recurrence) for far targets (too inaccurate cf downwards)...
Nf = numel(find(ifr)); wxp = s.wxp/zsc; % rescaled complex speed weights
if Nf>0 % Criterion added by Bowei Wu 03/05/15 to ensure ifr not empty
P(end,ifr) = sum(((wxp.*(V(:,end).*y(:)))*ones(1,Nf))./bsxfun(@minus,y,x(ifr).')); % int y^p/(y-x)
for ii = p:-1:2
P( ii,ifr) = (P(ii+1,ifr)-c(ii))./x(ifr).';
end
end

Q = zeros(p,N); % compute q_k from p_k via Helsing 2009 eqn (18)... (p even!)
% Note a rot ang appears here too... 4/17/18
%gam = exp(1i*pi/4); % 1i; % moves a branch arc as in p_1
%if side == 'e', gam = conj(gam); end % note gam is a phase, rots branch cut
Q(1:2:end,:) = P(2:2:end,:) - repmat(log((1-x.').*(-1-x.')),[ceil(p/2) 1]); % guessed!
% (-1)^k, k odd, note each log has branch cut in semicircle from -1 to 1
% Q(2:2:end,:) = P(3:2:end,:) - repmat(log((1-x.')./((-1-x.'))),[floor(p/2) 1]); % same cut as for p_1
Q(2:2:end,:) = P(3:2:end,:) - repmat(log(gam) + log((1-x.')./(gam*(-1-x.'))),[floor(p/2) 1]); % same cut as for p_1
Q = Q.*repmat(1./(1:p)',[1 N]); % k even
As = real((V.'\Q).'.*repmat((1i*s.nx)',[N 1])*zsc)/(2*pi*abs(zsc));
As = As*abs(zsc) - log(abs(zsc))/(2*pi)*repmat(abs(s.wxp)',[N 1]); % unscale, yuk
warning('off','MATLAB:nearlySingularMatrix');
% A = real((V.'\P).'*(1i/(2*pi))); % solve for special quadr weights
A = ((V.'\P(1:p,:)).'*(1i/(2*pi))); % do not take real for the eval of Stokes DLP non-laplace term. Bowei 10/19/14
%A = (P.'*inv(V))*(1i/(2*pi)); % equiv in exact arith, but not bkw stable.
if nargout>2
R = -(kron(ones(p,1),1./(1-x.')) + kron((-1).^(0:p-1).',1./(1+x.'))) +...
repmat((0:p-1)',[1 N]).*[zeros(1,N); P(1:p-1,:)]; % hypersingular kernel weights of Helsing 2009 eqn (14)
Az = (V.'\R).'*(1i/(2*pi*zsc)); % solve for targ complex-deriv mat & rescale
A1 = Az;
if nargout > 3
S = -(kron(ones(p,1),1./(1-x.').^2) - kron((-1).^(0:p-1).',1./(1+x.').^2))/2 +...
repmat((0:p-1)',[1 N]).*[zeros(1,N); R(1:p-1,:)]/2; % supersingular kernel weights
Azz = (V.'\S).'*(1i/(2*pi*zsc^2));
if nargout > 4
A1 = real(Az); A2 = -imag(Az); % note sign for y-deriv from C-deriv
A3 = real(Azz); A4 = -imag(Azz);
else
A1 = Az; A2 = Azz;
end
end
end
end
46 changes: 46 additions & 0 deletions chunkie/@kernel/helm2d.m
Original file line number Diff line number Diff line change
Expand Up @@ -40,12 +40,20 @@
obj.eval = @(s,t) chnk.helm2d.kern(zk, s, t, 's');
obj.fmm = @(eps,s,t,sigma) chnk.helm2d.fmm(eps, zk, s, t, 's', sigma);
obj.sing = 'log';
obj.splitinfo = [];
obj.splitinfo.type = {[0 0 0 0],[1 0 0 0]};
obj.splitinfo.action = {'r','r'};
obj.splitinfo.functions = @(s,t) helm2d_s_split(zk,s,t);

case {'d', 'double'}
obj.type = 'd';
obj.eval = @(s,t) chnk.helm2d.kern(zk, s, t, 'd');
obj.fmm = @(eps,s,t,sigma) chnk.helm2d.fmm(eps, zk, s, t, 'd', sigma);
obj.sing = 'log';
obj.splitinfo = [];
obj.splitinfo.type = {[0 0 0 0],[1 0 0 0],[0 0 -1 0]};
obj.splitinfo.action = {'r','r','r'};
obj.splitinfo.functions = @(s,t) helm2d_d_split(zk,s,t);

case {'sp', 'sprime'}
obj.type = 'sp';
Expand All @@ -69,6 +77,10 @@
obj.eval = @(s,t) chnk.helm2d.kern(zk, s, t, 'c', coefs);
obj.fmm = @(eps,s,t,sigma) chnk.helm2d.fmm(eps, zk, s, t, 'c', sigma, coefs);
obj.sing = 'log';
obj.splitinfo = [];
obj.splitinfo.type = {[0 0 0 0],[1 0 0 0],[0 0 -1 0]};
obj.splitinfo.action = {'r','r','r'};
obj.splitinfo.functions = @(s,t) helm2d_c_split(zk,s,t,coefs);

case {'cp', 'cprime'}
if ( nargin < 3 )
Expand All @@ -93,3 +105,37 @@


end

function f = helm2d_s_split(zk,s,t)
seval = chnk.helm2d.kern(zk, s, t, 's');
dist = (s.r(1,:)+1i*s.r(2,:))-(t.r(1,:)'+1i*t.r(2,:)');
logeval = log(abs(dist));
f = cell(2,1);
f{1} = seval + 1/(2*pi)*4*logeval.*imag(seval);
f{2} = 4*imag(seval);
end

function f = helm2d_d_split(zk,s,t)
deval = chnk.helm2d.kern(zk, s, t, 'd');
dist = (s.r(1,:)+1i*s.r(2,:))-(t.r(1,:)'+1i*t.r(2,:)');
logeval = log(abs(dist));
cauchyeval = (s.n(1,:)+1i*s.n(2,:))./(dist);
f = cell(3, 1);
f{1} = deval + 1/(2*pi)*4*logeval.*imag(deval) + 1/(2*pi)*real(cauchyeval);
f{2} = 4*imag(deval);
f{3} = ones(size(t.r,2),size(s.r,2));
end

function f = helm2d_c_split(zk,s,t,coefs)
seval = chnk.helm2d.kern(zk, s, t, 's');
deval = chnk.helm2d.kern(zk, s, t, 'd');
dist = (s.r(1,:)+1i*s.r(2,:))-(t.r(1,:)'+1i*t.r(2,:)');
logeval = log(abs(dist));
cauchyeval = (s.n(1,:)+1i*s.n(2,:))./(dist);
f = cell(3, 1);
f{1} = coefs(1) * (deval + 2/pi*logeval.*imag(deval) + 1/(2*pi)*real(cauchyeval)) + ...
coefs(2) * (seval + 2/pi*logeval.*imag(seval));
f{2} = coefs(1) * (4*imag(deval)) + coefs(2) * (4*imag(seval));
f{3} = coefs(1)*ones(size(t.r,2),size(s.r,2));
end

29 changes: 29 additions & 0 deletions chunkie/@kernel/lap2d.m
Original file line number Diff line number Diff line change
Expand Up @@ -42,12 +42,20 @@
obj.eval = @(s,t) chnk.lap2d.kern(s, t, 's');
obj.fmm = @(eps,s,t,sigma) chnk.lap2d.fmm(eps, s, t, 's', sigma);
obj.sing = 'log';
obj.splitinfo = [];
obj.splitinfo.type = {[1 0 0 0]};
obj.splitinfo.action = {'r'};
obj.splitinfo.functions = @(s,t) lap2d_s_split(s,t);

case {'d', 'double'}
obj.type = 'd';
obj.eval = @(s,t) chnk.lap2d.kern(s, t, 'd');
obj.fmm = @(eps,s,t,sigma) chnk.lap2d.fmm(eps, s, t, 'd', sigma);
obj.sing = 'smooth';
obj.splitinfo = [];
obj.splitinfo.type = {[0 0 -1 0]};
obj.splitinfo.action = {'r'};
obj.splitinfo.functions = @(s,t) lap2d_d_split(s,t);

case {'sp', 'sprime'}
obj.type = 'sp';
Expand Down Expand Up @@ -91,6 +99,10 @@
obj.eval = @(s,t) chnk.lap2d.kern(s, t, 'c', coefs);
obj.fmm = @(eps,s,t,sigma) chnk.lap2d.fmm(eps, s, t, 'c', sigma, coefs);
obj.sing = 'log';
obj.splitinfo = [];
obj.splitinfo.type = {[1 0 0 0],[0 0 -1 0]};
obj.splitinfo.action = {'r','r'};
obj.splitinfo.functions = @(s,t) lap2d_c_split(s,t,coefs);

otherwise
error('Unknown Laplace kernel type ''%s''.', type);
Expand All @@ -103,3 +115,20 @@
end

end

function f = lap2d_s_split(s,t)
f = cell(1,1);
f{1} = ones(size(t.r,2),size(s.r,2));
end

function f = lap2d_d_split(s,t)
f = cell(1,1);
f{1} = ones(size(t.r,2),size(s.r,2));
end

function f = lap2d_c_split(s,t,coefs)
f = cell(2,1);
f{1} = coefs(2)*ones(size(t.r,2),size(s.r,2));
f{2} = coefs(1)*ones(size(t.r,2),size(s.r,2));
end

28 changes: 28 additions & 0 deletions chunkie/@kernel/stok2d.m
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,10 @@
obj.fmm = @(eps, s, t, sigma) chnk.stok2d.fmm(eps, mu, s, t, 'svel', sigma);
obj.opdims = [2, 2];
obj.sing = 'log';
obj.splitinfo = [];
obj.splitinfo.type = {[1 0 0 0],[0 0 -1 0],[0 0 -1 0]};
obj.splitinfo.action = {'r','r','i'};
obj.splitinfo.functions = @(s,t) stok2d_s_split(mu, s, t);

case {'spres', 'spressure'}
obj.type = 'spres';
Expand Down Expand Up @@ -188,3 +192,27 @@


end

function f = stok2d_s_split(mu,s,t)
dist = (s.r(1,:)+1i*s.r(2,:))-(t.r(1,:)'+1i*t.r(2,:)');
distr = real(dist);
disti = imag(dist);
f = cell(3, 1);
ntarg = numel(t.r(1,:));
nsrc = numel(s.r(1,:));
sn1mat = repmat(s.n(1,:),[ntarg 1]);
sn2mat = repmat(s.n(2,:),[ntarg 1]);
f{1} = zeros(2*ntarg,2*nsrc);
f{2} = zeros(2*ntarg,2*nsrc);
f{3} = zeros(2*ntarg,2*nsrc);
f{1}(1:2:end,1:2:end) = 1/(2*mu);
f{1}(2:2:end,2:2:end) = 1/(2*mu);
f{2}(1:2:end,1:2:end) = -sn1mat.*distr/(2*mu);
f{2}(1:2:end,2:2:end) = -sn2mat.*distr/(2*mu);
f{2}(2:2:end,1:2:end) = -sn1mat.*disti/(2*mu);
f{2}(2:2:end,2:2:end) = -sn2mat.*disti/(2*mu);
f{3}(1:2:end,1:2:end) = -sn2mat.*distr/(2*mu);
f{3}(1:2:end,2:2:end) = sn1mat.*distr/(2*mu);
f{3}(2:2:end,1:2:end) = -sn2mat.*disti/(2*mu);
f{3}(2:2:end,2:2:end) = sn1mat.*disti/(2*mu);
end
Loading

0 comments on commit 3fe062e

Please sign in to comment.