Skip to content

Commit

Permalink
Add interface for box prompt in SAM 2 video predictor (#174)
Browse files Browse the repository at this point in the history
This PR adds an example to provide box prompt in SAM 2 as inputs to the `add_new_points_or_box` API (renamed from`add_new_points`, which is kept for backward compatibility). If `box` is provided, we add it as the first two points with labels 2 and 3, along with the user-provided points (consistent with how SAM 2 is trained).

The video predictor notebook `notebooks/video_predictor_example.ipynb` is updated to include segmenting from box prompt as an example.
  • Loading branch information
ronghanghu authored Aug 7, 2024
1 parent 6ba4c65 commit 6ecb5ff
Show file tree
Hide file tree
Showing 3 changed files with 451 additions and 89 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,14 +92,14 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)

# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):

# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
...
```

Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add prompts, make refinements, and track multiple objects in videos.
Please refer to the examples in [video_predictor_example.ipynb](./notebooks/video_predictor_example.ipynb) for details on how to add click or box prompts, make refinements, and track multiple objects in videos.

## Load from 🤗 Hugging Face

Expand Down Expand Up @@ -130,7 +130,7 @@ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = predictor.init_state(<your_video>)

# add new prompts and instantly get the output on the same frame
frame_idx, object_ids, masks = predictor.add_new_points(state, <your_prompts>):
frame_idx, object_ids, masks = predictor.add_new_points_or_box(state, <your_prompts>):

# propagate the prompts to get masklets throughout the video
for frame_idx, object_ids, masks in predictor.propagate_in_video(state):
Expand Down
480 changes: 400 additions & 80 deletions notebooks/video_predictor_example.ipynb

Large diffs are not rendered by default.

54 changes: 48 additions & 6 deletions sam2/sam2_video_predictor.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import warnings
from collections import OrderedDict

import torch
Expand Down Expand Up @@ -163,29 +164,66 @@ def _get_obj_num(self, inference_state):
return len(inference_state["obj_idx_to_id"])

@torch.inference_mode()
def add_new_points(
def add_new_points_or_box(
self,
inference_state,
frame_idx,
obj_id,
points,
labels,
points=None,
labels=None,
clear_old_points=True,
normalize_coords=True,
box=None,
):
"""Add new points to a frame."""
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]

if not isinstance(points, torch.Tensor):
if (points is not None) != (labels is not None):
raise ValueError("points and labels must be provided together")
if points is None and box is None:
raise ValueError("at least one of points or box must be provided as input")

if points is None:
points = torch.zeros(0, 2, dtype=torch.float32)
elif not isinstance(points, torch.Tensor):
points = torch.tensor(points, dtype=torch.float32)
if not isinstance(labels, torch.Tensor):
if labels is None:
labels = torch.zeros(0, dtype=torch.int32)
elif not isinstance(labels, torch.Tensor):
labels = torch.tensor(labels, dtype=torch.int32)
if points.dim() == 2:
points = points.unsqueeze(0) # add batch dimension
if labels.dim() == 1:
labels = labels.unsqueeze(0) # add batch dimension

# If `box` is provided, we add it as the first two points with labels 2 and 3
# along with the user-provided points (consistent with how SAM 2 is trained).
if box is not None:
if not clear_old_points:
raise ValueError(
"cannot add box without clearing old points, since "
"box prompt must be provided before any point prompt "
"(please use clear_old_points=True instead)"
)
if inference_state["tracking_has_started"]:
warnings.warn(
"You are adding a box after tracking starts. SAM 2 may not always be "
"able to incorporate a box prompt for *refinement*. If you intend to "
"use box prompt as an *initial* input before tracking, please call "
"'reset_state' on the inference state to restart from scratch.",
category=UserWarning,
stacklevel=2,
)
if not isinstance(box, torch.Tensor):
box = torch.tensor(box, dtype=torch.float32, device=points.device)
box_coords = box.reshape(1, 2, 2)
box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
box_labels = box_labels.reshape(1, 2)
points = torch.cat([box_coords, points], dim=1)
labels = torch.cat([box_labels, labels], dim=1)

if normalize_coords:
video_H = inference_state["video_height"]
video_W = inference_state["video_width"]
Expand Down Expand Up @@ -268,6 +306,10 @@ def add_new_points(
)
return frame_idx, obj_ids, video_res_masks

def add_new_points(self, *args, **kwargs):
"""Deprecated method. Please use `add_new_points_or_box` instead."""
return self.add_new_points_or_box(*args, **kwargs)

@torch.inference_mode()
def add_new_mask(
self,
Expand Down Expand Up @@ -548,7 +590,7 @@ def propagate_in_video_preflight(self, inference_state):
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
# Find all the frames that contain temporary outputs for any objects
# (these should be the frames that have just received clicks for mask inputs
# via `add_new_points` or `add_new_mask`)
# via `add_new_points_or_box` or `add_new_mask`)
temp_frame_inds = set()
for obj_temp_output_dict in temp_output_dict_per_obj.values():
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
Expand Down

0 comments on commit 6ecb5ff

Please sign in to comment.