Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

tfgridnet_integration #5471

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 60 additions & 28 deletions examples/speech_synthesis/preprocessing/denoise_and_vad_audio.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
SCALE
)
from examples.speech_to_text.data_utils import save_df_to_tsv
from examples.speech_synthesis.preprocessing.tfgridnet.enh_inference import SeparateSpeech


log = logging.getLogger(__name__)
Expand Down Expand Up @@ -78,7 +79,7 @@ def write(wav, filename, sr=16_000):


def process(args):
# making sure we are requested either denoise or vad
# Making sure we are requested either denoise or vad
if not args.denoise and not args.vad:
log.error("No denoise or vad is requested.")
return
Expand All @@ -91,31 +92,52 @@ def process(args):
out_vad = Path(args.output_dir).absolute().joinpath(PATHS[1])
out_vad.mkdir(parents=True, exist_ok=True)

log.info("Loading pre-trained speech enhancement model...")
model = master64().to(args.device)

log.info("Building the VAD model...")
vad = webrtcvad.Vad(int(args.vad_agg_level))

# preparing the output dict
output_dict = defaultdict(list)

log.info(f"Parsing input manifest: {args.audio_manifest}")
with open(args.audio_manifest, "r") as f:
manifest_dict = csv.DictReader(f, delimiter="\t")
for row in tqdm(manifest_dict):
filename = str(row["audio"])

final_output = filename
keep_sample = True
n_frames = row["n_frames"]
snr = -1
if args.denoise:
output_path_denoise = out_denoise.joinpath(Path(filename).name)
# convert to 16khz in case we use a differet sr
filename = str(row["audio"])

final_output = filename
keep_sample = True
n_frames = row["n_frames"]
snr = -1
# Denoise
if args.denoise:
# Load pre-trained speech enhancement model and build VAD model
log.info("Loading SeperateSpeech(TFGridnet) enhancement model...")
if args.model == "SeparateSpeech":

log.info(f"Training Configuration .yaml file: {args.config}")
log.info(f"Pre-trained model .pth file: {args.pth_model}")
model = SeparateSpeech(
train_config = args.config,
model_file= args.pth_model,
normalize_segment_scale=False,
show_progressbar=True,
ref_channel=4,
normalize_output_wav=True)

output_path_denoise = out_denoise.joinpath(Path(f"SeperateSpeech_{filename}").name)
waveform, sr = torchaudio.load(filename)
waveform = waveform.to("cpu")
estimate = model(waveform)
estimate = torch.tensor(estimate)
torchaudio.save(output_path_denoise, estimate[0], 16_000, encoding="PCM_S", bits_per_sample=16)

else:

log.info("Loading pre-trained speech enhancement model...")
model = master64().to(args.device)
# Set the output path for denoised audio
output_path_denoise = out_denoise.joinpath(Path(f"master64_{filename}").name)

# Convert to 16kHz if the sample rate is different
tmp_path = convert_sr(final_output, 16000)

# loading audio file and generating the enhanced version
# Load audio file and generate the enhanced version
out, sr = torchaudio.load(tmp_path)
out = out.to(args.device)
estimate = model(out)
Expand All @@ -126,7 +148,10 @@ def process(args):
snr = snr.cpu().detach().numpy()[0][0]
final_output = str(output_path_denoise)

if args.vad:
log.info("Building the VAD model...")
vad = webrtcvad.Vad(int(args.vad_agg_level))

if args.vad:
output_path_vad = out_vad.joinpath(Path(filename).name)
sr = torchaudio.info(final_output).sample_rate
if sr in [16000, 32000, 48000]:
Expand All @@ -140,37 +165,36 @@ def process(args):
# apply VAD
segment, sample_rate = apply_vad(vad, tmp_path)
if len(segment) < sample_rate * MIN_T:
keep_sample = False
print((
keep_sample = False
print((
f"WARNING: skip {filename} because it is too short "
f"after VAD ({len(segment) / sample_rate} < {MIN_T})"
))
))
else:
if sample_rate != sr:
tmp_path = generate_tmp_filename("wav")
write_wave(tmp_path, segment, sample_rate)
convert_sr(tmp_path, sr,
output_path=str(output_path_vad))
output_path=str(output_path_vad))
else:
write_wave(str(output_path_vad), segment, sample_rate)
final_output = str(output_path_vad)
segment, _ = torchaudio.load(final_output)
n_frames = segment.size(1)
n_frames = segment.size(1)

if keep_sample:
if keep_sample:
output_dict["id"].append(row["id"])
output_dict["audio"].append(final_output)
output_dict["n_frames"].append(n_frames)
output_dict["tgt_text"].append(row["tgt_text"])
output_dict["speaker"].append(row["speaker"])
output_dict["src_text"].append(row["src_text"])
output_dict["snr"].append(snr)
output_dict["snr"].append(snr)

out_tsv_path = Path(args.output_dir) / Path(args.audio_manifest).name
log.info(f"Saving manifest to {out_tsv_path.as_posix()}")
save_df_to_tsv(pd.DataFrame.from_dict(output_dict), out_tsv_path)


def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-manifest", "-i", required=True,
Expand All @@ -194,11 +218,19 @@ def main():
)
parser.add_argument("--denoise", action="store_true",
help="apply a denoising")
parser.add_argument(
"--model", "-m", type=str, default="master64",
help="the speech enhancement model to be used: master64 | SeparateSpeech."
)
parser.add_argument("--config", type=str,
help="Training Configuration file for SeparateSpeech model.")
parser.add_argument("--pth-model", type=str,
help="Path to the pre-trained model file for SeparateSpeech.")
parser.add_argument("--vad", action="store_true", help="apply a VAD")
args = parser.parse_args()

process(args)


if __name__ == "__main__":
main()
main()
Loading