Skip to content

Commit

Permalink
feat: Test generation for non-english corpus (#1734)
Browse files Browse the repository at this point in the history
  • Loading branch information
shahules786 authored Dec 6, 2024
1 parent 99d9425 commit 7eec750
Show file tree
Hide file tree
Showing 8 changed files with 515 additions and 24 deletions.
2 changes: 1 addition & 1 deletion docs/howtos/customizations/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ How to customize various aspects of Ragas to suit your needs.


## Testset Generation

- [Generate test data from non-english corpus](testgenerator/_language_adaptation.md)
- [Configure or automatically generate Personas](testgenerator/_persona_generator.md)
- [Customize single-hop queries for RAG evaluation](testgenerator/_testgen-custom-single-hop.md)
- [Create custom multi-hop queries for RAG evaluation](testgenerator/_testgen-customisation.md)
Expand Down
155 changes: 155 additions & 0 deletions docs/howtos/customizations/testgenerator/_language_adaptation.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
## Synthetic test generation from non-english corpus

In this notebook, you'll learn how to adapt synthetic test data generation to non-english corpus settings. For the sake of this tutorial, I am generating queries in Spanish from Spanish wikipedia articles.

### Download and Load corpus


```python
! git clone https://huggingface.co/datasets/explodinggradients/Sample_non_english_corpus
```

Cloning into 'Sample_non_english_corpus'...
remote: Enumerating objects: 12, done.
remote: Counting objects: 100% (8/8), done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 12 (delta 0), reused 0 (delta 0), pack-reused 4 (from 1)
Unpacking objects: 100% (12/12), 11.43 KiB | 780.00 KiB/s, done.



```python
from langchain_community.document_loaders import DirectoryLoader, TextLoader


path = "Sample_non_english_corpus/"
loader = DirectoryLoader(path, glob="**/*.txt")
docs = loader.load()
```

/opt/homebrew/Caskroom/miniforge/base/envs/ragas/lib/python3.9/site-packages/requests/__init__.py:102: RequestsDependencyWarning: urllib3 (1.26.20) or chardet (5.2.0)/charset_normalizer (None) doesn't match a supported version!
warnings.warn("urllib3 ({}) or chardet ({})/charset_normalizer ({}) doesn't match a supported "



```python
len(docs)
```




6



### Intialize required models


```python
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings

generator_llm = LangchainLLMWrapper(ChatOpenAI(model="gpt-4o-mini"))
generator_embeddings = LangchainEmbeddingsWrapper(OpenAIEmbeddings())
```

/opt/homebrew/Caskroom/miniforge/base/envs/ragas/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm


### Setup Persona and transforms
you may automatically create personas using this [notebook](./_persona_generator.md). For the sake of simplicity, I am using a pre-defined person, two basic tranforms and simple specic query distribution.


```python
from ragas.testset.persona import Persona

personas = [
Persona(
name="curious student",
role_description="A student who is curious about the world and wants to learn more about different cultures and languages",
),
]
```


```python
from ragas.testset.transforms.extractors.llm_based import NERExtractor
from ragas.testset.transforms.splitters import HeadlineSplitter

transforms = [HeadlineSplitter(), NERExtractor()]
```

### Intialize test generator


```python
from ragas.testset import TestsetGenerator

generator = TestsetGenerator(
llm=generator_llm, embedding_model=generator_embeddings, persona_list=personas
)
```

### Load and Adapt Queries

Here we load the required query types and adapt them to the target language.


```python
from ragas.testset.synthesizers.single_hop.specific import (
SingleHopSpecificQuerySynthesizer,
)

distribution = [
(SingleHopSpecificQuerySynthesizer(llm=generator_llm), 1.0),
]

for query, _ in distribution:
prompts = await query.adapt_prompts("spanish", llm=generator_llm)
query.set_prompts(**prompts)
```

### Generate


```python
dataset = generator.generate_with_langchain_docs(
docs[:],
testset_size=5,
transforms=transforms,
query_distribution=distribution,
)
```

Applying HeadlineSplitter: 0%| | 0/6 [00:00<?, ?it/s]unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
unable to apply transformation: 'headlines' property not found in this node
Generating Scenarios: 100%|██████████| 1/1 [00:07<00:00, 7.75s/it]
Generating Samples: 100%|██████████| 5/5 [00:03<00:00, 1.65it/s]



```python
eval_dataset = dataset.to_evaluation_dataset()
```


```python
print("Query:", eval_dataset[0].user_input)
print("Reference:", eval_dataset[0].reference)
```

Query: Quelles sont les caractéristiques du Bronx en tant que borough de New York?
Reference: Le Bronx est l'un des cinq arrondissements de New York, qui est la plus grande ville des États-Unis. Bien que le contexte ne fournisse pas de détails spécifiques sur le Bronx, il mentionne que New York est une ville cosmopolite avec de nombreux quartiers ethniques, ce qui pourrait inclure des caractéristiques culturelles variées présentes dans le Bronx.


That's it. You can customize the test generation process as per your requirements.


Loading

0 comments on commit 7eec750

Please sign in to comment.