Skip to content

Commit

Permalink
configlet sync docs and metadata
Browse files Browse the repository at this point in the history
  • Loading branch information
BNAndras committed Sep 12, 2023
1 parent 7ec99e7 commit 6433aa0
Show file tree
Hide file tree
Showing 156 changed files with 849 additions and 1,002 deletions.
8 changes: 2 additions & 6 deletions exercises/practice/accumulate/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,6 @@
# Instructions

Implement the `accumulate` operation, which, given a collection and an
operation to perform on each element of the collection, returns a new
collection containing the result of applying that operation to each element of
the input collection.
Implement the `accumulate` operation, which, given a collection and an operation to perform on each element of the collection, returns a new collection containing the result of applying that operation to each element of the input collection.

Given the collection of numbers:

Expand All @@ -21,6 +18,5 @@ Check out the test suite to see the expected function signature.

## Restrictions

Keep your hands off that collect/map/fmap/whatchamacallit functionality
provided by your standard library!
Keep your hands off that collect/map/fmap/whatchamacallit functionality provided by your standard library!
Solve this one yourself using other basic tools instead.
6 changes: 3 additions & 3 deletions exercises/practice/affine-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ The affine cipher is a type of monoalphabetic substitution cipher.
Each character is mapped to its numeric equivalent, encrypted with a mathematical function and then converted to the letter relating to its new numeric value.
Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the atbash cipher, because it has many more keys.

[comment]: # ( monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic )
[//]: # ( monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic )

## Encryption

Expand Down Expand Up @@ -52,7 +52,7 @@ The MMI of `a` is `x` such that the remainder after dividing `ax` by `m` is `1`:
ax mod m = 1
```

More information regarding how to find a Modular Multiplicative Inverse and what it means can be found in the [related Wikipedia article][MMI].
More information regarding how to find a Modular Multiplicative Inverse and what it means can be found in the [related Wikipedia article][mmi].

## General Examples

Expand All @@ -70,5 +70,5 @@ Finding MMI for `a = 15`:
- `(15 * 7) mod 26 = 1`, ie. `105 mod 26 = 1`
- `7` is the MMI of `15 mod 26`

[MMI]: https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
[mmi]: https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
[coprime-integers]: https://en.wikipedia.org/wiki/Coprime_integers
2 changes: 1 addition & 1 deletion exercises/practice/affine-cipher/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -25,5 +25,5 @@
},
"blurb": "Create an implementation of the Affine cipher, an ancient encryption algorithm from the Middle East.",
"source": "Wikipedia",
"source_url": "http://en.wikipedia.org/wiki/Affine_cipher"
"source_url": "https://en.wikipedia.org/wiki/Affine_cipher"
}
17 changes: 9 additions & 8 deletions exercises/practice/all-your-base/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,31 +2,32 @@

Convert a number, represented as a sequence of digits in one base, to any other base.

Implement general base conversion. Given a number in base **a**,
represented as a sequence of digits, convert it to base **b**.
Implement general base conversion.
Given a number in base **a**, represented as a sequence of digits, convert it to base **b**.

## Note

- Try to implement the conversion yourself.
Do not use something else to perform the conversion for you.

## About [Positional Notation](https://en.wikipedia.org/wiki/Positional_notation)
## About [Positional Notation][positional-notation]

In positional notation, a number in base **b** can be understood as a linear
combination of powers of **b**.
In positional notation, a number in base **b** can be understood as a linear combination of powers of **b**.

The number 42, *in base 10*, means:

(4 \* 10^1) + (2 \* 10^0)
`(4 * 10^1) + (2 * 10^0)`

The number 101010, *in base 2*, means:

(1 \* 2^5) + (0 \* 2^4) + (1 \* 2^3) + (0 \* 2^2) + (1 \* 2^1) + (0 \* 2^0)
`(1 * 2^5) + (0 * 2^4) + (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)`

The number 1120, *in base 3*, means:

(1 \* 3^3) + (1 \* 3^2) + (2 \* 3^1) + (0 \* 3^0)
`(1 * 3^3) + (1 * 3^2) + (2 * 3^1) + (0 * 3^0)`

I think you got the idea!

*Yes. Those three numbers above are exactly the same. Congratulations!*

[positional-notation]: https://en.wikipedia.org/wiki/Positional_notation
31 changes: 14 additions & 17 deletions exercises/practice/allergies/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,29 +2,26 @@

Given a person's allergy score, determine whether or not they're allergic to a given item, and their full list of allergies.

An allergy test produces a single numeric score which contains the
information about all the allergies the person has (that they were
tested for).
An allergy test produces a single numeric score which contains the information about all the allergies the person has (that they were tested for).

The list of items (and their value) that were tested are:

* eggs (1)
* peanuts (2)
* shellfish (4)
* strawberries (8)
* tomatoes (16)
* chocolate (32)
* pollen (64)
* cats (128)
- eggs (1)
- peanuts (2)
- shellfish (4)
- strawberries (8)
- tomatoes (16)
- chocolate (32)
- pollen (64)
- cats (128)

So if Tom is allergic to peanuts and chocolate, he gets a score of 34.

Now, given just that score of 34, your program should be able to say:

* Whether Tom is allergic to any one of those allergens listed above.
* All the allergens Tom is allergic to.
- Whether Tom is allergic to any one of those allergens listed above.
- All the allergens Tom is allergic to.

Note: a given score may include allergens **not** listed above (i.e.
allergens that score 256, 512, 1024, etc.). Your program should
ignore those components of the score. For example, if the allergy
score is 257, your program should only report the eggs (1) allergy.
Note: a given score may include allergens **not** listed above (i.e. allergens that score 256, 512, 1024, etc.).
Your program should ignore those components of the score.
For example, if the allergy score is 257, your program should only report the eggs (1) allergy.
4 changes: 2 additions & 2 deletions exercises/practice/allergies/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,6 @@
]
},
"blurb": "Given a person's allergy score, determine whether or not they're allergic to a given item, and their full list of allergies.",
"source": "Jumpstart Lab Warm-up",
"source_url": "http://jumpstartlab.com"
"source": "Exercise by the JumpstartLab team for students at The Turing School of Software and Design.",
"source_url": "https://turing.edu"
}
11 changes: 5 additions & 6 deletions exercises/practice/alphametics/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,7 @@

Write a function to solve alphametics puzzles.

[Alphametics](https://en.wikipedia.org/wiki/Alphametics) is a puzzle where
letters in words are replaced with numbers.
[Alphametics][alphametics] is a puzzle where letters in words are replaced with numbers.

For example `SEND + MORE = MONEY`:

Expand All @@ -23,10 +22,10 @@ Replacing these with valid numbers gives:
1 0 6 5 2
```

This is correct because every letter is replaced by a different number and the
words, translated into numbers, then make a valid sum.
This is correct because every letter is replaced by a different number and the words, translated into numbers, then make a valid sum.

Each letter must represent a different digit, and the leading digit of
a multi-digit number must not be zero.
Each letter must represent a different digit, and the leading digit of a multi-digit number must not be zero.

Write a function to solve alphametics puzzles.

[alphametics]: https://en.wikipedia.org/wiki/Alphametics
4 changes: 3 additions & 1 deletion exercises/practice/armstrong-numbers/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Instructions

An [Armstrong number](https://en.wikipedia.org/wiki/Narcissistic_number) is a number that is the sum of its own digits each raised to the power of the number of digits.
An [Armstrong number][armstrong-number] is a number that is the sum of its own digits each raised to the power of the number of digits.

For example:

Expand All @@ -10,3 +10,5 @@ For example:
- 154 is *not* an Armstrong number, because: `154 != 1^3 + 5^3 + 4^3 = 1 + 125 + 64 = 190`

Write some code to determine whether a number is an Armstrong number.

[armstrong-number]: https://en.wikipedia.org/wiki/Narcissistic_number
14 changes: 5 additions & 9 deletions exercises/practice/atbash-cipher/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,8 @@

Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.

The Atbash cipher is a simple substitution cipher that relies on
transposing all the letters in the alphabet such that the resulting
alphabet is backwards. The first letter is replaced with the last
letter, the second with the second-last, and so on.
The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
The first letter is replaced with the last letter, the second with the second-last, and so on.

An Atbash cipher for the Latin alphabet would be as follows:

Expand All @@ -14,12 +12,10 @@ Plain: abcdefghijklmnopqrstuvwxyz
Cipher: zyxwvutsrqponmlkjihgfedcba
```

It is a very weak cipher because it only has one possible key, and it is
a simple mono-alphabetic substitution cipher. However, this may not have
been an issue in the cipher's time.
It is a very weak cipher because it only has one possible key, and it is a simple mono-alphabetic substitution cipher.
However, this may not have been an issue in the cipher's time.

Ciphertext is written out in groups of fixed length, the traditional group size
being 5 letters, leaving numbers unchanged, and punctuation is excluded.
Ciphertext is written out in groups of fixed length, the traditional group size being 5 letters, leaving numbers unchanged, and punctuation is excluded.
This is to make it harder to guess things based on word boundaries.
All text will be encoded as lowercase letters.

Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/atbash-cipher/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -26,5 +26,5 @@
},
"blurb": "Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.",
"source": "Wikipedia",
"source_url": "http://en.wikipedia.org/wiki/Atbash"
"source_url": "https://en.wikipedia.org/wiki/Atbash"
}
16 changes: 7 additions & 9 deletions exercises/practice/bank-account/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,12 @@
# Instructions

Simulate a bank account supporting opening/closing, withdrawals, and deposits
of money. Watch out for concurrent transactions!
Simulate a bank account supporting opening/closing, withdrawals, and deposits of money.
Watch out for concurrent transactions!

A bank account can be accessed in multiple ways. Clients can make
deposits and withdrawals using the internet, mobile phones, etc. Shops
can charge against the account.
A bank account can be accessed in multiple ways.
Clients can make deposits and withdrawals using the internet, mobile phones, etc.
Shops can charge against the account.

Create an account that can be accessed from multiple threads/processes
(terminology depends on your programming language).
Create an account that can be accessed from multiple threads/processes (terminology depends on your programming language).

It should be possible to close an account; operations against a closed
account must fail.
It should be possible to close an account; operations against a closed account must fail.
14 changes: 0 additions & 14 deletions exercises/practice/beer-song/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -305,17 +305,3 @@ Take it down and pass it around, no more bottles of beer on the wall.
No more bottles of beer on the wall, no more bottles of beer.
Go to the store and buy some more, 99 bottles of beer on the wall.
```

## For bonus points

Did you get the tests passing and the code clean? If you want to, these
are some additional things you could try:

* Remove as much duplication as you possibly can.
* Optimize for readability, even if it means introducing duplication.
* If you've removed all the duplication, do you have a lot of
conditionals? Try replacing the conditionals with polymorphism, if it
applies in this language. How readable is it?

Then please share your thoughts in a comment on the submission. Did this
experiment make the code better? Worse? Did you learn anything from it?
2 changes: 1 addition & 1 deletion exercises/practice/beer-song/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -27,5 +27,5 @@
},
"blurb": "Produce the lyrics to that beloved classic, that field-trip favorite: 99 Bottles of Beer on the Wall.",
"source": "Learn to Program by Chris Pine",
"source_url": "http://pine.fm/LearnToProgram/?Chapter=06"
"source_url": "https://pine.fm/LearnToProgram/?Chapter=06"
}
39 changes: 16 additions & 23 deletions exercises/practice/binary-search-tree/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,29 +2,22 @@

Insert and search for numbers in a binary tree.

When we need to represent sorted data, an array does not make a good
data structure.

Say we have the array `[1, 3, 4, 5]`, and we add 2 to it so it becomes
`[1, 3, 4, 5, 2]` now we must sort the entire array again! We can
improve on this by realizing that we only need to make space for the new
item `[1, nil, 3, 4, 5]`, and then adding the item in the space we
added. But this still requires us to shift many elements down by one.

Binary Search Trees, however, can operate on sorted data much more
efficiently.

A binary search tree consists of a series of connected nodes. Each node
contains a piece of data (e.g. the number 3), a variable named `left`,
and a variable named `right`. The `left` and `right` variables point at
`nil`, or other nodes. Since these other nodes in turn have other nodes
beneath them, we say that the left and right variables are pointing at
subtrees. All data in the left subtree is less than or equal to the
current node's data, and all data in the right subtree is greater than
the current node's data.

For example, if we had a node containing the data 4, and we added the
data 2, our tree would look like this:
When we need to represent sorted data, an array does not make a good data structure.

Say we have the array `[1, 3, 4, 5]`, and we add 2 to it so it becomes `[1, 3, 4, 5, 2]`.
Now we must sort the entire array again!
We can improve on this by realizing that we only need to make space for the new item `[1, nil, 3, 4, 5]`, and then adding the item in the space we added.
But this still requires us to shift many elements down by one.

Binary Search Trees, however, can operate on sorted data much more efficiently.

A binary search tree consists of a series of connected nodes.
Each node contains a piece of data (e.g. the number 3), a variable named `left`, and a variable named `right`.
The `left` and `right` variables point at `nil`, or other nodes.
Since these other nodes in turn have other nodes beneath them, we say that the left and right variables are pointing at subtrees.
All data in the left subtree is less than or equal to the current node's data, and all data in the right subtree is greater than the current node's data.

For example, if we had a node containing the data 4, and we added the data 2, our tree would look like this:

4
/
Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/binary-search/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -27,5 +27,5 @@
},
"blurb": "Implement a binary search algorithm.",
"source": "Wikipedia",
"source_url": "http://en.wikipedia.org/wiki/Binary_search_algorithm"
"source_url": "https://en.wikipedia.org/wiki/Binary_search_algorithm"
}
2 changes: 1 addition & 1 deletion exercises/practice/bob/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -29,5 +29,5 @@
},
"blurb": "Bob is a lackadaisical teenager. In conversation, his responses are very limited.",
"source": "Inspired by the 'Deaf Grandma' exercise in Chris Pine's Learn to Program tutorial.",
"source_url": "http://pine.fm/LearnToProgram/?Chapter=06"
"source_url": "https://pine.fm/LearnToProgram/?Chapter=06"
}
Loading

0 comments on commit 6433aa0

Please sign in to comment.