Skip to content

Commit

Permalink
added a note: testing invert_doublet_eo_quda
Browse files Browse the repository at this point in the history
  • Loading branch information
simone-romiti committed Oct 4, 2023
1 parent a012365 commit b127a7e
Show file tree
Hide file tree
Showing 2 changed files with 432 additions and 411 deletions.
58 changes: 40 additions & 18 deletions doc/omeas_heavy_mesons.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -204,19 +204,32 @@ Our correlator becomes:
\, .
\end{equation}
<!-- -->
Upon a careful calculation for all values $i,j = 0,1$ we find, equivalently:
Upon a careful calculation for all values $i,j = 0,1$ we find, equivalently (using spacetime translational symmetry):
<!-- -->
\begin{equation}
\begin{split}
\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
=
&=
\operatorname{Tr}
\left[
(S_h)_{f_i f_j} (x|0)
\Gamma_2 \gamma_5
(S_u)^\dagger (x|0)
\gamma_5 \Gamma_1
\right]
\\
&=
\sum_{y,z}
\operatorname{Tr}
\left[
(S_h)_{f_i f_j} (x+y|y)
\Gamma_2 \gamma_5
(S_u)^\dagger (x+z|z)
\gamma_5 \Gamma_1
\delta_{yz}
\right]
\, .
\end{split}
\end{equation}
<!-- -->
This is a generalized case of eq. (A9) of @PhysRevD.59.074503.
Expand Down Expand Up @@ -269,22 +282,31 @@ Therefore, we can use spin dilutions to rephrase the correlator in a form which
\end{equation}
<!-- -->


<!-- Since $\Gamma_2=1,\gamma_5$ we always have $\Gamma_2 = \Gamma_2^\dagger$. -->
<!-- In this way, -->

We now define our spinor propagators.
If $\eta^{(\beta, \phi)}$ is the diluted source:
<!-- -->
\begin{equation}
(D_{\ell/h})_{\alpha_1 \alpha_2} ({\psi}_{\ell/h}^{(\beta, \phi)})_{\alpha_2}
= (\eta^{(\beta, \phi)})_{\alpha_1}
\, \implies \,
(\psi_{\ell/h}^{(\beta, \phi)})^\dagger_{\alpha_1}
\begin{align}
& (D_{\ell/h})_{\alpha_1 \alpha_2} (x|y) ({\psi}_{\ell/h}^{(\beta, \phi)})_{\alpha_2} (y)
= (\eta^{(\beta, \phi)})_{\alpha_1} (x)
\\
& \, \implies \,
(\psi_{\ell/h}^{(\beta, \phi)})_{\alpha_1} (x)
=
(\eta^{(\beta, \phi)})^\dagger_{\alpha_2}
(S_{\ell/h}^\dagger)_{\alpha_2 \alpha_1}
\end{equation}
(S_{\ell/h})_{\alpha_2 \alpha_1} (x | y)
\eta^{(\beta, \phi)}_{\alpha_2} (y)
=
(S_{\ell/h})_{\alpha_2 \alpha_1} (x | 0)
\eta^{(\beta, \phi)}_{\alpha_2} (0)
\\
& \, \implies \,
(\psi_{\ell/h}^{(\beta, \phi)})^{*}_{\alpha_1} (x)
=
(\eta^{(\beta, \phi)})^{*}_{\alpha_2} (y)
(S_{\ell/h}^\dagger)_{\alpha_2 \alpha_1} (x | y)
=
(\eta^{(\beta, \phi)})^\dagger_{\alpha_2} (0)
(S_{\ell/h}^\dagger)_{\alpha_2 \alpha_1} (x | 0)
\end{align}
<!-- -->
This means that for our matrix of correlators we have to do ${4_D \times 2_f \times 2_{h,\ell}} = 16$ inversions.

Expand Down Expand Up @@ -319,7 +341,7 @@ Our correlator is given by the following expectation value
(\Gamma_2 \gamma_5)_{\alpha_2 \alpha_3}
\\
&=
\mathcal{S}^{\alpha_3 \alpha_2} (\Gamma_2 \gamma_5)_{\alpha_2 \alpha_3}
\mathcal{R}^{\alpha_3 \alpha_2} (\Gamma_2 \gamma_5)_{\alpha_2 \alpha_3}
\end{split}
\end{equation}
<!-- -->
Expand All @@ -329,10 +351,10 @@ More explicitly:
\begin{equation}
\begin{split}
\Gamma_2=1 &\implies \mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
= \mathcal{S}^{00}+\mathcal{S}^{11}-\mathcal{S}^{22}-\mathcal{S}^{33}
= \mathcal{R}^{00}+\mathcal{R}^{11}-\mathcal{R}^{22}-\mathcal{R}^{33}
\\
\Gamma_2=\gamma_5 &\implies \mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
= \mathcal{S}^{00}+\mathcal{S}^{11}+\mathcal{S}^{22}+\mathcal{S}^{33}
= \mathcal{R}^{00}+\mathcal{R}^{11}+\mathcal{R}^{22}+\mathcal{R}^{33}
\end{split}
\end{equation}
<!-- -->
Expand All @@ -343,7 +365,7 @@ More explicitly:

See comments in the code: `tmLQCD/meas/correlators.c`.


**NOTE**: test if `invert_doublet_eo_quda` works (do one inversion and check the residual)



Loading

0 comments on commit b127a7e

Please sign in to comment.