-
Notifications
You must be signed in to change notification settings - Fork 189
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
457 additions
and
479 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
# | ||
# Copyright (C) 2013-2022 The ESPResSo project | ||
# | ||
# This file is part of ESPResSo. | ||
# | ||
# ESPResSo is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# ESPResSo is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU General Public License | ||
# along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
# | ||
|
||
""" | ||
Benchmark Lattice-Boltzmann fluid + Lennard-Jones particles. | ||
""" | ||
import espressomd | ||
import espressomd.lb | ||
import benchmarks | ||
import numpy as np | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser(description="Benchmark LB simulations. " | ||
"Save the results to a CSV file.") | ||
parser.add_argument("--particles_per_core", metavar="N", action="store", | ||
type=int, default=125, required=False, | ||
help="Number of particles per core") | ||
parser.add_argument("--box_l", action="store", nargs="+", | ||
type=int, default=argparse.SUPPRESS, required=False, | ||
help="Box length (cubic box)") | ||
parser.add_argument("--lb_sites_per_particle", metavar="N_LB", action="store", | ||
type=float, default=28, required=False, | ||
help="Number of LB sites per particle") | ||
parser.add_argument("--volume_fraction", metavar="FRAC", action="store", | ||
type=float, default=0.03, required=False, | ||
help="Fraction of the simulation box volume occupied by " | ||
"particles (range: [0.01-0.74], default: 0.03)") | ||
parser.add_argument("--single_precision", action="store_true", required=False, | ||
help="Using single-precision floating point accuracy") | ||
parser.add_argument("--gpu", action=argparse.BooleanOptionalAction, | ||
default=False, required=False, help="Use GPU implementation") | ||
parser.add_argument("--multi-gpu", action=argparse.BooleanOptionalAction, | ||
default=False, required=False, help="Use multi-GPU implementation") | ||
parser.add_argument("--output", metavar="FILEPATH", action="store", | ||
type=str, required=False, default="benchmarks.csv", | ||
help="Output file (default: benchmarks.csv)") | ||
parser.add_argument("--blocks_per_mpi_rank", action="store", nargs=3, | ||
type=int, default=[1, 1, 1], required=False, | ||
help="blocks per mpi rank") | ||
|
||
args = parser.parse_args() | ||
|
||
# process and check arguments | ||
n_iterations = 30 | ||
assert args.volume_fraction > 0, "--volume_fraction must be a positive number" | ||
assert args.volume_fraction < np.pi / (3 * np.sqrt(2)), \ | ||
"--volume_fraction exceeds the physical limit of sphere packing (~0.74)" | ||
assert "box_l" not in args or args.particles_per_core == 0, \ | ||
"Argument --box_l requires --particles_per_core=0" | ||
|
||
required_features = ["LENNARD_JONES", "WALBERLA"] | ||
if args.gpu: | ||
required_features.append("CUDA") | ||
espressomd.assert_features(required_features) | ||
|
||
# make simulation deterministic | ||
np.random.seed(42) | ||
|
||
# System | ||
############################################################# | ||
system = espressomd.System(box_l=[1, 1, 1]) | ||
|
||
# Interaction parameters (Lennard-Jones) | ||
############################################################# | ||
|
||
lj_eps = 1.0 # LJ epsilon | ||
lj_sig = 1.0 # particle diameter | ||
lj_cut = lj_sig * 2**(1. / 6.) # cutoff distance | ||
|
||
# System parameters | ||
############################################################# | ||
n_proc = system.cell_system.get_state()["n_nodes"] | ||
n_part = n_proc * args.particles_per_core | ||
if n_part == 0: | ||
box_l = 3 * args.box_l if len(args.box_l) == 1 else args.box_l | ||
agrid = 1. | ||
lb_grid = box_l | ||
measurement_steps = 80 | ||
else: | ||
# volume of N spheres with radius r: N * (4/3*pi*r^3) | ||
box_l = (n_part * 4. / 3. * np.pi * (lj_sig / 2.)**3 | ||
/ args.volume_fraction)**(1. / 3.) | ||
lb_grid = (n_part * args.lb_sites_per_particle)**(1. / 3.) | ||
lb_grid = int(2. * round(lb_grid / 2.)) | ||
agrid = box_l / lb_grid | ||
measurement_steps = max(50, int(120**3 / lb_grid**3)) | ||
measurement_steps = 40 | ||
lb_grid = 3 * [lb_grid] | ||
box_l = 3 * [box_l] | ||
|
||
blocks_per_mpi_rank = args.blocks_per_mpi_rank | ||
|
||
# System | ||
############################################################# | ||
system.box_l = box_l * system.cell_system.node_grid | ||
print(f"box length: {system.box_l}") | ||
print(f"LB shape: {lb_grid}") | ||
print(f"LB agrid: {agrid:.3f}") | ||
|
||
# Integration parameters | ||
############################################################# | ||
system.time_step = 0.01 | ||
system.cell_system.skin = 0.5 | ||
|
||
# Interaction and particle setup | ||
############################################################# | ||
if n_part: | ||
system.non_bonded_inter[0, 0].lennard_jones.set_params( | ||
epsilon=lj_eps, sigma=lj_sig, cutoff=lj_cut, shift="auto") | ||
system.part.add(pos=np.random.random((n_part, 3)) * system.box_l) | ||
benchmarks.minimize(system, n_part / 2.) | ||
system.integrator.set_vv() | ||
system.thermostat.set_langevin(kT=1.0, gamma=1.0, seed=42) | ||
|
||
# tuning and equilibration | ||
min_skin = 0.2 | ||
max_skin = 1.0 | ||
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin( | ||
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100))) | ||
print("Equilibration") | ||
system.integrator.run(500) | ||
print("Tune skin: {:.3f}".format(system.cell_system.tune_skin( | ||
min_skin=min_skin, max_skin=max_skin, tol=0.05, int_steps=100))) | ||
print("Equilibration") | ||
system.integrator.run(500) | ||
system.thermostat.turn_off() | ||
|
||
# LB fluid setup | ||
############################################################# | ||
lb_class = espressomd.lb.LBFluidWalberla | ||
if args.gpu or args.multi_gpu: | ||
lb_class = espressomd.lb.LBFluidWalberlaGPU | ||
if args.multi_gpu: | ||
system.cuda_init_handle.call_method("set_device_id_per_rank") | ||
lbf = lb_class(agrid=agrid, tau=system.time_step, kinematic_viscosity=1., | ||
density=1., single_precision=args.single_precision, blocks_per_mpi_rank=blocks_per_mpi_rank) | ||
system.lb = lbf | ||
if n_part: | ||
system.thermostat.set_lb(LB_fluid=lbf, gamma=1., seed=42) | ||
|
||
|
||
# time integration loop | ||
timings = benchmarks.get_timings(system, measurement_steps, n_iterations) | ||
|
||
# average time | ||
avg, ci = benchmarks.get_average_time(timings) | ||
print(f"average: {1000 * avg:.2f} +/- {1000 * ci:.2f} ms (95% C.I.)") | ||
|
||
# write report | ||
benchmarks.write_report(args.output, n_proc, timings, measurement_steps) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.