Skip to content
This repository was archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1111_100)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 100 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.00205522221586
    Mean:  327.762924026
    Std:   144.824399158
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.000566397917282
    Mean:  0.00498374877756
    Std:   0.00447634787979
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  2.50111042988e-13
    Std:   4.06102369641e-13
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  3.63797880709e-12
    Mean:  8.50086507853e-10
    Std:   1.6862323669e-09
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0261199081906
    Mean:  378.978014326
    Std:   172.071894754
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  1.49744691953e-05
    Mean:  4.11356440554e-05
    Std:   1.14829550327e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  1.57043237041
    Mean:  372.298688102
    Std:   164.099771527
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  335.578004005
    Mean:  1407.05456271
    Std:   380.728163325
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.00097949400697
    Mean:  21.3555401404
    Std:   42.3934189323
Testing problem: Rastrigin, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  6.50872777896e-09
    Mean:  3.3948322344
    Std:   1.29408149248
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  1.69639613797
    Mean:  4.808601802
    Std:   1.17858311968
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  1.39976918945e-14
    Std:   3.85131860396e-14
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  0.0
    Std:   0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  1.01634246412
    Mean:  5.47897642422
    Std:   2.30318652697
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  1.88147217273e-06
    Mean:  6.68186291556e-06
    Std:   2.05988577122e-06
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.0584548088852
    Mean:  0.334085767106
    Std:   0.224694132052
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  0.0
    Mean:  8.06911097088
    Std:   6.5943902934
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  2.78639652151e-06
    Mean:  0.00328301539335
    Std:   0.00875248223538
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  0.000206095671029
    Mean:  2.44025893533
    Std:   1.86346140304
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.388388326467
    Mean:  1.00559323662
    Std:   0.271179970872
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.000176249569178
    Mean:  1.92565467216
    Std:   1.29850286937
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  3.93092119661
    Mean:  5.02320599317
    Std:   0.233744322913
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.012604422894
    Mean:  0.972904166526
    Std:   1.67103268917
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  6.25076100287
    Mean:  8.76822581855
    Std:   7.56521534194
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  3.94760613105
    Mean:  38.755420897
    Std:   45.1268930813
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  3.51043102823e-29
    Mean:  0.0398657911235
    Std:   0.396659613382
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  0.0861168898594
    Mean:  0.591588391078
    Std:   0.275691391995
Testing problem: Ackley, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  2.82785674877e-08
    Mean:  1.52329615819e-07
    Std:   8.98017934704e-08
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.000200157785792
    Mean:  0.000436165595026
    Std:   0.000115569626326
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  2.05954808763e-10
    Mean:  7.345879105e-10
    Std:   2.62692971917e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  4.4408920985e-16
    Mean:  7.46069872548e-16
    Std:   9.90786813829e-16
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0356020205276
    Mean:  0.0858558442816
    Std:   0.0276432950796
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  0.000520574248736
    Mean:  0.00100661426895
    Std:   0.00014742624546
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.0625095802831
    Mean:  0.294009664969
    Std:   0.116304845834
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  3.99680288865e-15
    Mean:  1.44962242108
    Std:   4.61157030417
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  8.97016690833e-05
    Mean:  0.000446224910416
    Std:   0.000220355183872
Testing problem: Griewank, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  3.14093195897e-11
    Mean:  0.0244461635342
    Std:   0.0122224174543
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  0.105327881292
    Mean:  0.201373792302
    Std:   0.0404073148151
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  2.20672299323e-08
    Mean:  0.000192784163704
    Std:   0.000459078704523
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  0.0
    Mean:  3.33066907388e-18
    Std:   3.31397388567e-17
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  0.0830274582354
    Mean:  0.326884979896
    Std:   0.128816224154
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  1.81629780814e-05
    Mean:  0.00285954256297
    Std:   0.00430645957571
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  0.178730303859
    Mean:  0.839104446909
    Std:   0.215682573548
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  0.0
    Mean:  0.00522132840254
    Std:   0.00835376045034
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  4.51276300617e-06
    Mean:  0.00493398440584
    Std:   0.00571616729784
Testing problem: Levy5, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -4411.52282082
    Mean:  -4045.68952045
    Std:   236.10299422
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -3468.25134942
    Mean:  -2871.94994959
    Std:   228.823441431
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.51353215
    Mean:  -4392.61634063
    Std:   20.0168177899
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -4411.52293549
    Mean:  -4390.15059882
    Std:   26.900372043
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -4291.59008067
    Mean:  -3593.37824295
    Std:   401.318014918
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -4411.48704967
    Mean:  -4402.74842105
    Std:   55.953057639
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -4266.92565148
    Mean:  -3746.75955221
    Std:   400.49454367
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  -4113.00700325
    Mean:  -1842.38180544
    Std:   2595.02286103
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -4390.48967443
    Mean:  -4211.10075728
    Std:   71.4228006666
Testing problem: Cassini 1, Dimension: 6
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  4.98440653684
    Mean:  8.71836863709
    Std:   2.83685202293
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  5.12689635818
    Mean:  5.61631875172
    Std:   1.29871276756
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.07744693713
    Mean:  5.80262587253
    Std:   1.17318376439
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  5.42136153976
    Mean:  6.88333483554
    Std:   1.20746765188
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  4.96954938356
    Mean:  15.0308889959
    Std:   8.57641856088
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  5.32303158407
    Mean:  11.0702883602
    Std:   4.06217638052
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  5.54206845308
    Mean:  15.754508699
    Std:   5.68209874636
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  5.30342237192
    Mean:  16.7109623646
    Std:   8.09993200005
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  5.83961522458
    Mean:  9.68740130537
    Std:   2.19591381869
Testing problem: GTOC_1, Dimension: 8
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  -1328466.32843
    Mean:  -779482.327903
    Std:   181882.111565
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  -853530.760605
    Mean:  -424737.197926
    Std:   125586.682029
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  -894162.927735
    Mean:  -587990.682275
    Std:   121003.468637
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  -896462.99538
    Mean:  -609801.459525
    Std:   114359.649954
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  -753063.380089
    Mean:  -100924.280675
    Std:   158689.501229
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  -1095707.473
    Mean:  -856765.409669
    Std:   133943.107454
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  -746075.483499
    Mean:  -162970.140012
    Std:   213164.838785
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  -1027873.22939
    Mean:  -196842.741175
    Std:   271900.879669
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  -1121212.85929
    Mean:  -529225.872093
    Std:   161562.629492
Testing problem: Cassini 2, Dimension: 22
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  11.5128563243
    Mean:  18.5896981347
    Std:   2.79074546942
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  19.3312280463
    Mean:  26.6207530792
    Std:   2.11260902906
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  15.7096523056
    Mean:  22.2943011251
    Std:   2.31667552784
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  13.5927468975
    Mean:  20.1346676379
    Std:   2.65156837862
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  9.80276320468
    Mean:  21.6080505763
    Std:   4.74088726469
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  11.8973630336
    Mean:  18.3004948172
    Std:   3.32245122598
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  15.6854326684
    Mean:  25.5492172238
    Std:   3.60683831943
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  14.5154836788
    Mean:  23.0639808118
    Std:   4.0294207105
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  15.419608534
    Mean:  22.6889153485                                                                                                                                       
    Std:   2.81236851881                                                                                                                                       
Testing problem: Messenger full, Dimension: 26
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:  10.4604084257
    Mean:  16.4837182911
    Std:   1.9329026246
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:  17.3776360465
    Mean:  25.7043556669
    Std:   2.62422176112
    Algorithm name: DE - Self adaptive - gen:500 variant:2 self_adaptation:1 restart:1 ftol:1e-30 xtol:1e-30
    Best:  16.275595457
    Mean:  22.1116264466
    Std:   2.50446665574
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] restart:1 ftol:1e-30 xtol:1e-30
    Best:  12.1816718553
    Mean:  20.2223063233
    Std:   2.42822796824
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:  10.5147360404
    Mean:  19.8254207751
    Std:   6.65573775257
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:  16.8455740393
    Mean:  20.9961792144
    Std:   2.00579686534
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:  11.6657583227
    Mean:  21.7001996927
    Std:   4.44253309599
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 restart:1
    Best:  12.4265547068
    Mean:  21.1258255831
    Std:   7.78486737198
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:  16.8112198822
    Mean:  23.9751787506
 Std:   3.15124305499
Clone this wiki locally