Skip to content

Commit

Permalink
Update spectra definition
Browse files Browse the repository at this point in the history
  • Loading branch information
mfherbst committed Nov 21, 2024
1 parent 038b9ce commit 2529729
Showing 1 changed file with 35 additions and 20 deletions.
55 changes: 35 additions & 20 deletions src/09_Operators.jl
Original file line number Diff line number Diff line change
Expand Up @@ -263,29 +263,39 @@ Having discussed the basic properties of operators, we now turn our attention to
- Generalizing from matrices, an eigenpair $(\lambda, \varphi) \in \mathbb{C} \times \hilbert$ of the operator $\opA$ satisfies
```math
\tag{$\ast$}
\begin{align}
\opA \varphi=\lambda \varphi & \Leftrightarrow(\opA-\lambda) \varphi=0
\\
&\Leftrightarrow \varphi \in \color{gray} \underbrace{\color{black} (\opA-\lambda)^{-1}\{0\}}_{\ker(\opA-\lambda)}
&\Leftrightarrow \varphi \in \ker(\opA-\lambda)
\end{align}
```
Where by $\opA-\lambda$ we understand the operator $\opA -\lambda \operatorname{id}_\hilbert$.
where by $\opA-\lambda$ we understand the operator $\opA -\lambda \operatorname{id}_\hilbert$.
Again, the **resolvent** $R_{z}(\opA)=(\opA-z)^{-1}$ arises naturally, and its study is closely linked to the spectrum of $\opA$.
- Under a slight abuse of notation we can write
$\ker(\opA - \lambda) = (\opA-λ)^{-1} \{0\}$,
i.e. the solution set of applying the **resolvent**
$R_{z}(\opA)=(\opA-z)^{-1}$ to zero.
- First we note that for eigenvalues $(\opA-\lambda)^{-1}$ *cannot be a bounded operator*.
To show this, assume it was bounded, i.e. we had a $C>0$ such that
- For eigenvalues $\opA-λ$ is clearly not invertible as $(\ast)$
shows that $\opA-λ$ is not injective. However, let's assume for a second
it was and that a unique non-zero solution $φ = (\opA-λ)^{-1} 0$ existed.
Then we had
```math
0 < \|φ\| = \left\|(\opA-\lambda)^{-1} 0\right\|.
```
This implies that $(\opA-λ)^{-1}$ *cannot be bounded*, because if it was
than there existed a constant $C>0$ such that
```math
\left\|(\opA-\lambda)^{-1} x \right\| \leq C\|x\| \qquad \forall x \in \hilbert
\left\|(\opA-\lambda)^{-1} f \right\| \leq C\|f\| \qquad \forall f \in \hilbert
```
in particular for one non-zero $\varphi \in \ker(\opA-\lambda) \leq \hilbert$
and in particular
```math
0<\|\varphi\|=\left\|(\opA-\lambda)^{-1} 0\right\| \leqslant C \| 0 \|=0,
\left\|(\opA-\lambda)^{-1} 0\right\| = C \, \|0\| = 0,
```
which is a contradiction.
which is a contradiction to $φ$ being non-zero.
This motivates the next definition
As in the finite-dimensional case we first construct the *resolvent set*, which includes all the points that cannot be eigenvalues, i.e. the ones where the resolvent exists ($\opA-z$ can be inverted) and also the above aspect of a non-bounded $(\opA-λ)^{-1}$ is excluded:
"""

# ╔═╡ 59c06a2d-d980-458f-bf7a-44bb4f4a8a80
Expand All @@ -303,23 +313,27 @@ md"""
```math
\left\|(\opA-z)^{-1} x\right\| \leq C \|x\| \quad \forall x \in \hilbert .
```
For $z \in \resolvent(x)$ the resolvent $R_{z}(\opA)=(\opA-z)^{-1}$ exists and is bounded.
For $z \in \resolvent(x)$ the **resolvent** $R_{z}(\opA)=(\opA-z)^{-1}$ exists and is bounded.
"""

# ╔═╡ 10aeb8f3-ecdb-4e7c-baad-caa3e1f8994b
# ╔═╡ 8db7d0bc-ff6b-4387-8009-d83e74faaad0
md"""
By construction the set $\resolvent(A)$ contains all $z \in \mathbb{C}$ for which $(\opA-z) x=y$ admits a unique solution $x \in D(\opA)$ for a given $y \in \hilbert$.
Thus, for $(\opA-z) x=0$, only the trivial solution $x=0$ is possible.
To obtain eigenvalues we thus have to study the complement. As before
!!! tip "Remark (Eigenvalues are in the complement of ρ)"
By construction the set $\resolvent(A)$ contains all $z \in \mathbb{C}$ for which $(\opA-z) x=y$ admits a unique solution $x \in D(\opA)$ for a given $y \in \hilbert$.
Thus, for $(\opA-z) x=0$, only the trivial solution $x=0$ is possible.
To obtain eigenvalues we thus have to study the complement. As before
"""

# ╔═╡ 86e5f05a-6562-48c4-80f4-10c7cee0698e
md"""
!!! note "Definition (Spectrum)"
The **spectrum** is $\sigma (\opA) = \mathbb C \setminus \resolvent(\opA)$.
"""

# ╔═╡ 9823dc80-2adb-4e21-9588-fdd7dc1b3545
md"""
From the definition of $\resolvent(\opA)$ there can be three reasons for a value $\lambda \in \mathbb{C}$ to not be in $\rho(\opA)$, namely
From the definition of $\resolvent(\opA)$ there can be three reasons for a value $\lambda \in \mathbb{C}$ to be in $\sigma(\opA)$, respectively not in $\rho(\opA)$, namely
1. $(\opA-z)$ not injective.
Expand Down Expand Up @@ -347,11 +361,11 @@ md"""
```
!!! tip "Remark (Spectra in finite dimensions)"
For $\hilbert=\mathbb C^{N}$, (3) is always given, and 1. and 2. are equivalent because
For $\hilbert=\mathbb C^{N}$, 3. is always given, and 1. and 2. are equivalent because
```math
\operatorname{dim}(\ker(\opA-\lambda))+\operatorname{dim}(\im (\opA-\lambda))=N .
```
Therefore $\sigma(\opA)=\sigma_p(\opA) \neq \varnothing$ (see Lemma [Matrix Eigenproblems].3).
Therefore $\sigma(\opA)=\sigma_p(\opA) \neq \varnothing$ (see Lemma 3 in [Matrix eigenproblems](https://teaching.matmat.org/error-control/03_Matrix_eigenproblems.html)).
"""

# ╔═╡ 6b9eb655-048a-42f6-b50c-d928071636bb
Expand Down Expand Up @@ -1349,7 +1363,8 @@ version = "17.4.0+2"
# ╟─a2e86a6f-88e7-4cbd-90c6-6d0e20af7869
# ╟─85df6f49-6935-45f0-9526-0b2b4075f3af
# ╟─59c06a2d-d980-458f-bf7a-44bb4f4a8a80
# ╟─10aeb8f3-ecdb-4e7c-baad-caa3e1f8994b
# ╟─8db7d0bc-ff6b-4387-8009-d83e74faaad0
# ╟─86e5f05a-6562-48c4-80f4-10c7cee0698e
# ╟─9823dc80-2adb-4e21-9588-fdd7dc1b3545
# ╟─5827ce09-7199-4357-a5f4-8ec7ae396fca
# ╟─6b9eb655-048a-42f6-b50c-d928071636bb
Expand Down

0 comments on commit 2529729

Please sign in to comment.