Fast convolutional for multi-channel object detection and evaluation inspired by SFA3D
SFA3D: " Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds" ''' @misc{Super-Fast-Accurate-3D-Object-Detection-PyTorch, author = {Nguyen Mau Dung}, title = {{Super-Fast-Accurate-3D-Object-Detection-PyTorch}}, howpublished = {\url{https://github.com/maudzung/Super-Fast-Accurate-3D-Object-Detection}}, year = {2020} } '''
3D KITTI Dataset은Link. 에서 다운 받을 수 있습니다. 구성 요소는 다음과 같습니다:
- Velodyne point clouds (29 GB)
- Training labels of object data set (5 MB)
- Camera calibration matrices of object data set (16 MB)
- Left color images of object data set (12 GB) (For visualization purpose only)
''' !python train.py --gpu_idx 0 --mode classic #--mode checkpoints folder '''
''' !python train.py --evaluate --gpu_idx 0 --resume_path './model_path' '''
''' !python demo_2_sides.py --gpu_idx 0 --peak_thresh 0.2 --saved_fn final_demo_classic '''
${ROOT}
└── checkpoints/
├── fpn_resnet_18/
├── fpn_resnet_18_epoch_300.pth
└── dataset/
└── kitti/
├──ImageSets/
│ ├── test.txt
│ ├── train.txt
│ └── val.txt
├── training/
│ ├── image_2/ (left color camera)
│ ├── calib/
│ ├── label_2/
│ └── velodyne/
└── testing/
│ ├── image_2/ (left color camera)
│ ├── calib/
│ └── velodyne/
└── classes_names.txt
└── sfa/
├── config/
│ ├── train_config.py
│ └── kitti_config.py
├── data_process/
│ ├── kitti_dataloader.py
│ ├── demo_dataset.py
│ ├── kitti_bev_utils.py
│ ├── kitti_dataset.py
│ ├── transformation.py
│ └── kitti_data_utils.py
├── losses/
│ └── losses.py
├── models/
│ ├── fpn_resnet.py
│ ├── resnet.py
│ └── model_utils.py
└── utils/
│ ├── box_np_ops.py
│ ├── classic_utils.py
│ ├── demo_utils.py
│ ├── eval.py
│ ├── evaluate.py
│ ├── evaluation_utils.py
│ ├── kitti_common.py
│ ├── logger.py
│ ├── lr_scheduler.py
│ ├── misc.py
│ ├── nms_gpu.py
│ ├── rotate_iou.py
│ ├── nms_gpu.py
│ ├── rotate_iou.py
│ ├── torch_utils.py
│ ├── train_utils.py
│ └── visualization_utils.py
├── classical_demo.ipynb
├── classical_train_eval.ipynb
├── demo_2_sides.py
├── demo_front.py
├── test.py
└── train.py
├── README.md
└── requirements.txt
[1] "Object Detector for Autonomous Vehicles Based on Improved Faster RCNN": 2D 이전 버전
[2]"Torch-quantum"QNN Implementation
[3] "KITTI-WAYMO Adapter": WAYMO데이터 활용
[4] CenterNet: Objects as Points paper, PyTorch Implementation
[5] RTM3D: PyTorch Implementation
[6] Libra_R-CNN: PyTorch Implementation
The YOLO-based models with the same BEV maps input:
[7] Complex-YOLO: v4, v3, v2
3D LiDAR Point pre-processing:
[8] VoxelNet: PyTorch Implementation