A package that wraps Hugging Face's Transformer Trainer with Hydra integration for better configuration management and hyperparameter optimization support.
Checkout my powerformer repo for a concrete example.
- Hydra configuration management
- Optuna hyperparameter optimization integration
- Easy-to-extend base classes for custom datasets and trainers
- Specify TrainingArguments or hyperparameter search parameters within a hydra configuration file
- An example config,
base.yaml
, is provided in this package.
- An example config,
pip install hydra-trainer
- Create your dataset class by extending
BaseDataset
or use any dataset that extendsdatasets.Dataset
:
from typing import Literal
from omegaconf import DictConfig
from hydra_trainer import BaseDataset
class ExampleDataset(BaseDataset):
def __init__(self, cfg: DictConfig, dataset_key: Literal["train", "eval"]):
super().__init__(cfg)
self.dataset_key = dataset_key
# TODO: implement dataset loading and preprocessing
raise NotImplementedError
def __len__(self):
# TODO: implement this method
raise NotImplementedError
def __getitem__(self, idx):
# TODO: implement this method
raise NotImplementedError
- Create your trainer class by extending
BaseTrainer
:
from typing import Literal
import optuna
from omegaconf import DictConfig
from hydra_trainer import BaseTrainer
class ExampleTrainer(BaseTrainer[ExampleDataset, DictConfig]):
def model_init_factory(self):
def model_init(trial: optuna.Trial | None = None):
model_cfg = self.get_trial_model_cfg(trial, self.cfg)
# TODO: implement model initialization
raise NotImplementedError
return model_init
def dataset_factory(
self, dataset_cfg: DictConfig, dataset_key: Literal["train", "eval"]
) -> ExampleDataset:
# TODO: implement this method
raise NotImplementedError
- Set up your training script with Hydra:
import hydra
from omegaconf import DictConfig
@hydra.main(config_path="hydra_trainer", config_name="base", version_base=None)
def main(cfg: DictConfig):
trainer = ExampleTrainer(cfg)
trainer.train()
if __name__ == "__main__":
main()
- Model Initialization Factory: Implement
model_init_factory()
to define how your model is created. - Dataset Factory: Implement
dataset_factory()
to create your training and evaluation datasets
The package uses Hydra for configuration management. Here's the base configuration structure:
seed: 42
checkpoint_path: null
resume_from_checkpoint: null
do_hyperoptim: false
early_stopping_patience: 3
model: # model parameters - access them within `model_init_factory` implementation
d_model: 128
n_layers: 12
n_heads: 16
d_ff: 512
trainer: # transformers.TrainingArguments
num_train_epochs: 3
eval_strategy: steps
eval_steps: 50
logging_steps: 5
output_dir: training_output
per_device_train_batch_size: 2
per_device_eval_batch_size: 4096
learning_rate: 5e-3
weight_decay: 0.0
fp16: true
hyperopt:
n_trials: 128
patience: 2
persistence: true # set to false to use in memory storage instead of db storage
load_if_exists: true
storage_url: postgresql://postgres:[email protected]:5432/postgres
storage_heartbeat_interval: 15
storage_engine_kwargs:
pool_size: 5
connect_args:
keepalives: 1
hp_space:
training:
- name: learning_rate # TrainingArguments attribute name
type: float
low: 5e-5
high: 5e-3
step: 1e-5
log: true
model:
- name: d_model # model parameters
type: int
low: 128
high: 512
step: 128
log: true
Enable hyperparameter optimization by setting do_hyperoptim: true
in your config. The package uses Optuna for hyperparameter optimization with support for:
- Integer parameters
- Float parameters
- Categorical parameters
- Persistent storage with a relational database
- Early stopping with patient pruning