Elixir wrapper over FFmpeg for reading audio and video files.
See an interview with FFmpeg enthusiast: https://youtu.be/9kaIXkImCAM
Make sure you have installed FFMpeg (ver. 4.x - 7.x) development packages on your system (see here for installation one-liners) and add Xav to the list of your dependencies:
def deps do
[
{:xav, "~> 0.8.1"},
# Add Nx if you want to have Xav.Frame.to_nx/1
{:nx, ">= 0.0.0"}
]
end
Decode
decoder = Xav.Decoder.new(:vp8, out_format: :rgb24)
{:ok, %Xav.Frame{} = frame} = Xav.Decoder.decode(decoder, <<"somebinary">>)
Decode with audio resampling
decoder = Xav.Decoder.new(:opus, out_format: :f32, out_sample_rate: 16_000)
{:ok, %Xav.Frame{} = frame} = Xav.Decoder.decode(decoder, <<"somebinary">>)
Read from a file:
r = Xav.Reader.new!("./some_mp4_file.mp4")
{:ok, %Xav.Frame{} = frame} = Xav.Reader.next_frame(r)
tensor = Xav.Frame.to_nx(frame)
Kino.Image.new(tensor)
Read from a camera:
r = Xav.Reader.new!("/dev/video0", device?: true, out_format: :rgb24)
{:ok, %Xav.Frame{} = frame} = Xav.Reader.next_frame(r)
tensor = Xav.Frame.to_nx(frame)
Kino.Image.new(tensor)
Speech to text:
{:ok, whisper} = Bumblebee.load_model({:hf, "openai/whisper-tiny"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "openai/whisper-tiny"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/whisper-tiny"})
{:ok, generation_config} = Bumblebee.load_generation_config({:hf, "openai/whisper-tiny"})
serving =
Bumblebee.Audio.speech_to_text_whisper(whisper, featurizer, tokenizer, generation_config,
defn_options: [compiler: EXLA]
)
# Read a couple of frames.
# See https://hexdocs.pm/bumblebee/Bumblebee.Audio.WhisperFeaturizer.html for default sampling rate.
frames =
Xav.Reader.stream!("sample.mp3", read: :audio, out_format: :f32, out_channels: 1, out_sample_rate: 16_000)
|> Stream.take(200)
|> Enum.map(fn frame -> Xav.Frame.to_nx(frame) end)
batch = Nx.Batch.concatenate(frames)
batch = Nx.Defn.jit_apply(&Function.identity/1, [batch])
Nx.Serving.run(serving, batch)
To make clangd
aware of the header files used in your project, you can create a compile_commands.json
file.
clangd
uses this file to know the compiler flags, include paths, and other compilation options for each source file.
The easiest way to generate compile_commands.json
from a Makefile is to use the bear
tool. bear
is a tool that records the compiler calls during a build and creates the compile_commands.json
file.
You can install bear
with your package manager:
- macOS: brew install bear
- Ubuntu/Debian: sudo apt install bear
- Fedora: sudo dnf install bear
After installing bear, you can run it alongside your make command to capture the necessary information.
bear -- mix compile