Skip to content

Add CopulaABC version from Xuhui into zoo #11

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions xuhui_CopulaABC/Test_Pure.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
import scipy
import numpy as np

from elfi.model.utils import distance_as_discrepancy


from numpy.linalg import inv
from numpy.linalg import det
from scipy.stats import multivariate_normal
from scipy.stats import norm
import scipy.stats as ss
import matplotlib.pyplot as plt
import elfi
from scipy.stats import norm
# %matplotlib inline
from elfi import adjust_posterior
from elfi.methods.parameter_inference import ParameterInference, Copula_ABC

import logging
logging.basicConfig(level=logging.INFO)
from utility import *

# from Inference_COPULA_ABC_inherit_rejection import *
import elfi


#
# def dimension_wise(simulated, observed):
# # simulated = np.column_stack(simulated)
# # observed = np.column_stack(observed)
# return abs(simulated - observed)

def run_copulaABC():
np.random.seed(20180509)
PP = 4 # dimensions
yobs = np.zeros((1, PP))
yobs[0, 0] = 10

A = np.diag(np.ones(PP))
A[0, 0] = 100
b = 0.1
thetas = multivariate_normal.rvs(mean=np.zeros(PP), cov=A)
thetas[1] = thetas[1]+b*(thetas[0]**2)-100*b

m = elfi.new_model()
n_sample = 500
quantiles = 0.01

elfi.Prior(ss.multivariate_normal, np.zeros(PP), np.eye(PP), model = m, name = 'muss')
elfi.Simulator(simulator_multivariate, m['muss'], observed=yobs, name = 'Gauss')

elfi.Summary(identity, m['Gauss'], name = 'identity')
elfi.Distance(dimension_wise, m['identity'], name = 'd')

# rej = elfi.Rejection(m['d'], output_names=['identity'], batch_size=10000, seed=20180509).sample(n_sample, quantile = quantiles)
rej = Copula_ABC(m['d'], output_names=['identity'], batch_size=10000, seed=20180509).sample(n_sample, quantile = quantiles)

a = 1

if __name__ == '__main__':
run_copulaABC()
165 changes: 165 additions & 0 deletions xuhui_CopulaABC/utility.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
import scipy
import numpy as np
from numpy.linalg import inv
from numpy.linalg import det
from scipy.stats import multivariate_normal
from scipy.stats import norm

import scipy.stats as ss
import matplotlib.pyplot as plt
import elfi
from scipy.stats import norm
# %matplotlib inline

import logging
logging.basicConfig(level=logging.INFO)


# def simulator(mu_val, sigma_val, batch_size=1, random_state=None):
# mu_val = mu_val.reshape((batch_size, -1))
# n_dim = mu_val.shape[1]
# sigma_val = sigma_val.reshape((batch_size, n_dim, n_dim))
#
# return_mat = np.empty((batch_size, 1000, n_dim))
# for i in range(batch_size):
# return_mat[i, :, :] = multivariate_normal.rvs(mu_val[i], sigma_val[i], size=1000, random_state=random_state)
#
# return return_mat
#
#
# def simulator_syn(mu_val, batch_size=1, random_state=None):
# mu_val = mu_val.reshape((batch_size, -1))
# n_dim = mu_val.shape[1]
# sigma_val = np.eye(n_dim)
# return_mat = multivariate_normal.rvs(np.zeros(n_dim), sigma_val, size=batch_size, random_state=random_state)+mu_val
#
# # return_mat = np.empty((batch_size, 1000, n_dim))
# # for i in range(batch_size):
# # return_mat[i, :, :] = multivariate_normal.rvs(mu_val[i], sigma_val[i], size=1000, random_state=random_state)
#
# return return_mat

def simulator_multivariate(muss, batch_size=1, random_state=None):
mu_ss = muss.reshape((batch_size, -1))

Sigma1 = np.ones((mu_ss.shape[1], mu_ss.shape[1]))*0.5
np.fill_diagonal(Sigma1, 1)

return_mat = multivariate_normal.rvs(np.zeros(mu_ss.shape[1]), Sigma1, size=batch_size)+muss

return return_mat

#
# def simulator_bivariate(mu_ii, mu_jj, batch_size=1, random_state=None):
# mu_i = mu_ii.reshape((batch_size, -1))
# mu_j = mu_jj.reshape((batch_size, -1))
#
# Sigma1 = np.ones((2, 2))*0.5
# np.fill_diagonal(Sigma1, 1)
#
# return_mat = multivariate_normal.rvs(np.zeros(2), Sigma1, size=batch_size)+np.hstack((mu_i, mu_j))
#
# return return_mat
#
# def simulator_univariate(mu_ii, batch_size=1, random_state=None):
# mu_i = mu_ii.reshape((-1))
#
# Sigma1 = 1
#
# return_mat = norm.rvs(0, Sigma1, size=batch_size)+mu_i
#
# return return_mat


def dist(val1, val2):
dist = (np.sum((val1-val2)**2, axis=1))**0.5
return dist

def ghat(x, data):
nn = len(data)
h = 1.06*np.std(data)*(nn**(-0.2))
return np.sum(norm.pdf((x.reshape((-1, 1))-data)/h), axis = 1)/(nn*h)

def Ghat(x, data):
nn = len(data)
h = 1.06*np.std(data)*(nn**(-0.2))
# x = np.array([-2.5, 1.5, -0.7, 0.3])
return np.sum(norm.cdf((x.reshape((-1, 1))-data)/h), axis = 1)/(nn)

def mean(y):
# return y
return np.mean(y, axis=1)

def var(y):
return np.var(y, axis=1)

def identity(y):
return y

def identity_0(y):
if len(y.shape)==1:
return y[0]
else:
return y[:, 0]

def identity_1(y):
if len(y.shape)==1:
return y[1]
else:
return y[:, 1]



def gaussian_copula(thetas, margs, Lambdas):

etas = np.zeros(thetas.shape)
pp = len(margs[0])
LambdasInv = inv(Lambdas)
for ii in range(pp):
etas[:, ii] = norm.ppf(Ghat(thetas[:, ii], margs[:, ii]))
# temp = np.zeros(len(thetas))
# for ii in range(len(thetas)):
# temp[ii] = 0.5*np.dot(np.dot(etas[ii], np.eye(pp)-LambdasInv), etas[ii].T)
temp = 0.5*np.diag(np.dot(np.dot(etas, np.eye(pp)-LambdasInv), etas.T))

gs = np.zeros(thetas.shape)
for ii in range(pp):
gs[:, ii] = np.log(ghat(thetas[:, ii], margs[:, ii]))
gsum = np.sum(gs, axis=1)

return np.exp(temp+gsum-0.5*np.log(det(Lambdas)))



def dimension_wise(simulated, observed):
# simulated = np.column_stack(simulated)
# observed = np.column_stack(observed)
return abs(simulated - observed)




# def simulator(mu_val, sigma_val, batch_size=1, random_state=None):
# mu_val = mu_val.reshape((batch_size, -1))
# n_dim = mu_val.shape[1]
# sigma_val = sigma_val.reshape((batch_size, n_dim, n_dim))
#
# return_mat = np.empty((batch_size, 1000, n_dim))
# # multivariate_normal.rvs(mu_val, sigma_val).shape
# #
# # sigma_val.shape
# # mu_val.shape
#
#
# for i in range(batch_size):
# return_mat[i, :, :] = multivariate_normal.rvs(mu_val[i], sigma_val[i], size=1000, random_state=random_state)
#
# return return_mat

#
# mu_val, sigma_val = np.atleast_1d(mu_val, sigma_val)
# if batch_size == 1:
# return_mat = multivariate_normal.rvs(mu_val, sigma_val, size = 1000, random_state=random_state)
# elif batch_size >1:
# aa = multivariate_normal.rvs(np.zeros(len(sigma_val[0])), np.diag(np.ones(len(sigma_val[0]))), size = batch_size)
# return_mat = np.einsum('ijk, ik->ij', sigma_val, aa)