Skip to content

Commit

Permalink
DOC: add ref to sklearn's GP and KRR in rbf docs
Browse files Browse the repository at this point in the history
  • Loading branch information
elcorto committed Jul 30, 2024
1 parent 991282b commit d624efe
Showing 1 changed file with 11 additions and 1 deletion.
12 changes: 11 additions & 1 deletion doc/source/written/background/rbf.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,19 @@

.. _rbf:


Radial Basis Function interpolation an regression
=================================================

.. note::
While the material here is a useful reference and the code has been used in
production, we actually recommend to use Gaussian process regression
instead, e.g. :class:`sklearn.gaussian_process.GaussianProcessRegressor`,
or, if you want to replicate :mod:`~pwtools.rbf`, then use KRR
(:class:`sklearn.kernel_ridge.KernelRidge`). See
https://github.com/elcorto/gp_playground for a detailed `comparison of GPs
and KRR
<https://elcorto.github.io/gp_playground/content/gp_krr_hyperopt/intro.html>`_.

Some background information on the method implemented in :mod:`~pwtools.rbf`.
For code examples, see the doc string of :class:`~pwtools.rbf.core.Rbf` and
``examples/rbf``.
Expand Down Expand Up @@ -164,3 +173,4 @@ Other implementations
---------------------

* :class:`scipy.interpolate.Rbf`
* :class:`sklearn.kernel_ridge.KernelRidge`

0 comments on commit d624efe

Please sign in to comment.