Skip to content

Commit

Permalink
CRAN Release 0.11.0 (#700)
Browse files Browse the repository at this point in the history
Co-authored-by: Indrajeet Patil <[email protected]>
  • Loading branch information
strengejacke and IndrajeetPatil authored Mar 23, 2024
1 parent 01eff88 commit 80b5b2f
Show file tree
Hide file tree
Showing 30 changed files with 521 additions and 65 deletions.
6 changes: 3 additions & 3 deletions CRAN-SUBMISSION
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
Version: 0.10.9
Date: 2024-02-17 07:56:08 UTC
SHA: 051016febd197937ad083266b630c871fa9e1623
Version: 0.11.0
Date: 2024-03-22 21:30:58 UTC
SHA: 051b9bb2b7721c632ce145f85c55aa55c8eebf90
3 changes: 1 addition & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: performance
Title: Assessment of Regression Models Performance
Version: 0.10.9.10
Version: 0.11.0
Authors@R:
c(person(given = "Daniel",
family = "Lüdecke",
Expand Down Expand Up @@ -154,4 +154,3 @@ Config/Needs/website:
r-lib/pkgdown,
easystats/easystatstemplate
Config/rcmdcheck/ignore-inconsequential-notes: true
Remotes: easystats/see
2 changes: 2 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ S3method(check_normality,htest)
S3method(check_normality,lmerModLmerTest)
S3method(check_normality,merMod)
S3method(check_normality,numeric)
S3method(check_normality,performance_simres)
S3method(check_outliers,BFBayesFactor)
S3method(check_outliers,DHARMa)
S3method(check_outliers,character)
Expand Down Expand Up @@ -517,6 +518,7 @@ S3method(r2_tjur,nestedLogit)
S3method(residuals,BFBayesFactor)
S3method(residuals,check_normality_numeric)
S3method(residuals,iv_robust)
S3method(residuals,performance_simres)
S3method(rstudent,check_normality_numeric)
S3method(test_bf,ListModels)
S3method(test_bf,default)
Expand Down
2 changes: 1 addition & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# performance 0.10.10
# performance 0.11.0

## New supported models

Expand Down
13 changes: 7 additions & 6 deletions R/check_model.R
Original file line number Diff line number Diff line change
Expand Up @@ -144,12 +144,13 @@
#' inside the error bounds. See [`binned_residuals()`] for further details.
#'
#' @section Residuals for (Generalized) Linear Models:
#' Plots that check the normality of residuals (Q-Q plot) or the homogeneity of
#' variance use standardized Pearson's residuals for generalized linear models,
#' and standardized residuals for linear models. The plots for the normality of
#' residuals (with overlayed normal curve) and for the linearity assumption use
#' the default residuals for `lm` and `glm` (which are deviance residuals for
#' `glm`).
#' Plots that check the homogeneity of variance use standardized Pearson's
#' residuals for generalized linear models, and standardized residuals for
#' linear models. The plots for the normality of residuals (with overlayed
#' normal curve) and for the linearity assumption use the default residuals
#' for `lm` and `glm` (which are deviance residuals for `glm`). The Q-Q plots
#' use simulated residuals (see [`simulate_residuals()`]) for non-Gaussian
#' models and standardized residuals for linear models.
#'
#' @section Troubleshooting:
#' For models with many observations, or for more complex models in general,
Expand Down
2 changes: 1 addition & 1 deletion R/check_model_diagnostics.R
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@
d <- data.frame(Predicted = predicted)

# residuals based on simulated residuals - but we want normally distributed residuals
d$Residuals <- stats::residuals(simres, quantileFunction = stats::qnorm, ...)
d$Residuals <- stats::residuals(simres, quantile_function = stats::qnorm, ...)
d$Res2 <- d$Residuals^2
d$StdRes <- insight::get_residuals(model, type = "pearson")

Expand Down
17 changes: 17 additions & 0 deletions R/check_normality.R
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,23 @@ check_normality.glm <- function(x, ...) {
invisible(out)
}

# simulated residuals ----------

#' @export
check_normality.performance_simres <- function(x, ...) {
# check for normality of residuals
res <- stats::residuals(x, quantile_function = stats::qnorm)
p.val <- .check_normality(res[!is.infinite(res) & !is.na(res)], x)

attr(p.val, "data") <- x
attr(p.val, "object_name") <- insight::safe_deparse_symbol(substitute(x))
attr(p.val, "effects") <- "fixed"
class(p.val) <- unique(c("check_normality", "see_check_normality", class(p.val)))

p.val
}


# numeric -------------------

#' @export
Expand Down
13 changes: 2 additions & 11 deletions R/check_overdispersion.R
Original file line number Diff line number Diff line change
Expand Up @@ -62,19 +62,10 @@
#' multilevel/hierarchical models. Cambridge; New York: Cambridge University
#' Press.
#'
#' @examplesIf getRversion() >= "4.0.0" && require("glmmTMB", quietly = TRUE)
#'
#' library(glmmTMB)
#' data(Salamanders)
#' @examplesIf getRversion() >= "4.0.0" && require("glmmTMB")
#' data(Salamanders, package = "glmmTMB")
#' m <- glm(count ~ spp + mined, family = poisson, data = Salamanders)
#' check_overdispersion(m)
#'
#' m <- glmmTMB(
#' count ~ mined + spp + (1 | site),
#' family = poisson,
#' data = Salamanders
#' )
#' check_overdispersion(m)
#' @export
check_overdispersion <- function(x, ...) {
UseMethod("check_overdispersion")
Expand Down
3 changes: 2 additions & 1 deletion R/check_residuals.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@
#'
#' @inheritSection simulate_residuals Tests based on simulated residuals
#'
#' @seealso [`simulate_residuals()`] and [`check_predictions()`].
#' @seealso [`simulate_residuals()`], [`check_zeroinflation()`],
#' [`check_overdispersion()`] and [`check_predictions()`].
#'
#' @return The p-value of the test statistics.
#'
Expand Down
2 changes: 1 addition & 1 deletion R/check_zeroinflation.R
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
#'
#' @section Tests based on simulated residuals:
#' For certain models, resp. model from certain families, tests are based on
#' simulated residuals (see [`simulated_residual()`]). These are usually more
#' simulated residuals (see [`simulate_residuals()`]). These are usually more
#' accurate for testing such models than the traditionally used Pearson residuals.
#' However, when simulating from more complex models, such as mixed models or
#' models with zero-inflation, there are several important considerations.
Expand Down
53 changes: 48 additions & 5 deletions R/simulate_residuals.R
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,25 @@
#' @param x A model object.
#' @param iterations Number of simulations to run.
#' @param ... Arguments passed on to [`DHARMa::simulateResiduals()`].
#' @param object A `performance_simres` object, as returned by `simulate_residuals()`.
#' @param quantile_function A function to apply to the residuals. If `NULL`, the
#' residuals are returned as is. If not `NULL`, the residuals are passed to this
#' function. This is useful for returning normally distributed residuals, for
#' example: `residuals(x, quantile_function = qnorm)`.
#' @param outlier_values A vector of length 2, specifying the values to replace
#' `-Inf` and `Inf` with, respectively.
#'
#' @return Simulated residuals, which can be further processed with
#' [`check_residuals()`]. The returned object is of class `DHARMa` and
#' `performance_simres`.
#'
#' @seealso [`check_residuals()`] and [`check_predictions()`].
#' @seealso [`check_residuals()`], [`check_zeroinflation()`],
#' [`check_overdispersion()`] and [`check_predictions()`].
#'
#' @details This function is a small wrapper around [`DHARMa::simulateResiduals()`].
#' It basically only sets `plot = FALSE` and adds an additional class attribute
#' (`"performance_sim_res"`), which allows using the DHARMa object in own plotting
#' functions in the **see** package. See also `vignette("DHARMa")`. There is a
#' functions from the **see** package. See also `vignette("DHARMa")`. There is a
#' `plot()` method to visualize the distribution of the residuals.
#'
#' @section Tests based on simulated residuals:
Expand Down Expand Up @@ -50,6 +58,9 @@
#' m <- lm(mpg ~ wt + cyl + gear + disp, data = mtcars)
#' simulate_residuals(m)
#'
#' # extract residuals
#' head(residuals(simulate_residuals(m)))
#'
#' @export
simulate_residuals <- function(x, iterations = 250, ...) {
insight::check_if_installed("DHARMa")
Expand Down Expand Up @@ -78,9 +89,10 @@ print.performance_simres <- function(x, ...) {
# DHARMa's method.
msg <- paste0(
"Simulated residuals from a model of class `", class(x$fittedModel)[1],
"` based on ", x$nSim, " simulations. Use `check_residuals()` to check ",
"uniformity of residuals. It is recommended to refer to `?DHARMa::simulateResiudals`",
" and `vignette(\"DHARMa\")` for more information about different settings",
"` based on ", x$nSim, " simulations. Use `check_residuals()` to check",
" uniformity of residuals or `residuals()` to extract simulated residuals.",
" It is recommended to refer to `?DHARMa::simulateResiudals` and",
" `vignette(\"DHARMa\")` for more information about different settings",
" in particular situations or for particular models.\n"
)
cat(insight::format_message(msg))
Expand All @@ -93,6 +105,37 @@ plot.performance_simres <- function(x, ...) {
}


# methods --------------------------

#' @rdname simulate_residuals
#' @export
residuals.performance_simres <- function(object, quantile_function = NULL, outlier_values = NULL, ...) {
# check for DHARMa argument names
dots <- list(...)
if (!is.null(dots$quantileFunction)) {
quantile_function <- dots$quantileFunction
}
if (!is.null(dots$outlierValues)) {
outlier_values <- dots$outlierValues
}

if (is.null(quantile_function)) {
res <- object$scaledResiduals
} else {
res <- quantile_function(object$scaledResiduals)
if (!is.null(outlier_values)) {
# check for correct length of outlier_values
if (length(outlier_values) != 2) {
insight::format_error("`outlier_values` must be a vector of length 2.")
}
res[res == -Inf] <- outlier_values[1]
res[res == Inf] <- outlier_values[2]
}
}
res
}


# helper functions ---------------------

.simres_statistics <- function(x, statistic_fun, alternative = "two.sided") {
Expand Down
Loading

0 comments on commit 80b5b2f

Please sign in to comment.