Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code style #606

Merged
merged 9 commits into from
Jun 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion R/bayesfactor_models.R
Original file line number Diff line number Diff line change
Expand Up @@ -611,7 +611,7 @@ as.matrix.bayesfactor_models <- function(x, ...) {

# Else... Get marginal likelihood
if (verbose) {
message("Computation of Marginal Likelihood: estimating marginal likelihood, please wait...")
insight::format_alert("Computation of Marginal Likelihood: estimating marginal likelihood, please wait...")
}
# Should probably allow additional arguments such as reps or cores to for bridge_sampler
bridgesampling::bridge_sampler(mod, silent = TRUE)
Expand Down
2 changes: 1 addition & 1 deletion R/bayesfactor_parameters.R
Original file line number Diff line number Diff line change
Expand Up @@ -199,7 +199,7 @@ bayesfactor_pointnull <- function(posterior,
verbose = TRUE,
...) {
if (length(null) > 1 && verbose) {
message("'null' is a range - computing a ROPE based Bayes factor.")
insight::format_alert("`null` is a range - computing a ROPE based Bayes factor.")
}

bayesfactor_parameters(
Expand Down
2 changes: 0 additions & 2 deletions R/describe_posterior.R
Original file line number Diff line number Diff line change
Expand Up @@ -499,8 +499,6 @@ describe_posterior.default <- function(posteriors, ...) {
row.names(out) <- NULL
}



# Prepare output
attr(out, "ci_method") <- ci_method
out
Expand Down
16 changes: 11 additions & 5 deletions R/map_estimate.R
Original file line number Diff line number Diff line change
@@ -1,16 +1,22 @@
#' Maximum A Posteriori probability estimate (MAP)
#'
#' Find the **Highest Maximum A Posteriori probability estimate (MAP)** of a posterior, i.e., the value associated with the highest probability density (the "peak" of the posterior distribution). In other words, it is an estimation of the *mode* for continuous parameters. Note that this function relies on [estimate_density], which by default uses a different smoothing bandwidth (`"SJ"`) compared to the legacy default implemented the base R [density] function (`"nrd0"`).
#' Find the **Highest Maximum A Posteriori probability estimate (MAP)** of a
#' posterior, i.e., the value associated with the highest probability density
#' (the "peak" of the posterior distribution). In other words, it is an estimation
#' of the *mode* for continuous parameters. Note that this function relies on
#' [`estimate_density()`], which by default uses a different smoothing bandwidth
#' (`"SJ"`) compared to the legacy default implemented the base R [`density()`]
#' function (`"nrd0"`).
#'
#' @inheritParams hdi
#' @inheritParams estimate_density
#'
#' @return A numeric value if `x` is a vector. If `x` is a model-object,
#' returns a data frame with following columns:
#' \itemize{
#' \item `Parameter` The model parameter(s), if `x` is a model-object. If `x` is a vector, this column is missing.
#' \item `MAP_Estimate` The MAP estimate for the posterior or each model parameter.
#' }
#'
#' - `Parameter`: The model parameter(s), if `x` is a model-object. If `x` is a
#' vector, this column is missing.
#' - `MAP_Estimate`: The MAP estimate for the posterior or each model parameter.
#'
#' @examples
#' \dontrun{
Expand Down
4 changes: 2 additions & 2 deletions R/mediation.R
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ mediation.stanmvreg <- function(model, treatment, mediator, response = NULL, cen
# check for binary response. In this case, user should rescale variables
modelinfo <- insight::model_info(model)
if (any(sapply(modelinfo, function(i) i$is_binomial, simplify = TRUE))) {
message("One of moderator or outcome is binary, so direct and indirect effects may be on different scales. Consider rescaling model predictors, e.g. with `effectsize::standardize()`.")
insight::format_alert("One of moderator or outcome is binary, so direct and indirect effects may be on different scales. Consider rescaling model predictors, e.g. with `effectsize::standardize()`.")
}

# model responses
Expand Down Expand Up @@ -355,7 +355,7 @@ print.bayestestR_mediation <- function(x, digits = 3, ...) {
)

if (any(prop_mediated_ori$Estimate < 0)) {
message("\nDirect and indirect effects have opposite directions. The proportion mediated is not meaningful.")
insight::format_alert("\nDirect and indirect effects have opposite directions. The proportion mediated is not meaningful.")
}
}

Expand Down
2 changes: 1 addition & 1 deletion R/p_direction.R
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,7 @@ p_direction.get_predicted <- function(x, ...) {
if ("iterations" %in% names(attributes(x))) {
out <- p_direction(as.data.frame(t(attributes(x)$iterations)), ...)
} else {
stop("No iterations present in the output.", call. = FALSE)
insight::format_error("No iterations present in the output.")
}
attr(out, "object_name") <- insight::safe_deparse_symbol(substitute(x))
out
Expand Down
9 changes: 8 additions & 1 deletion R/plot.R
Original file line number Diff line number Diff line change
Expand Up @@ -46,42 +46,49 @@ plot.bayestestR_eti <- function(x, ...) {
NextMethod()
}


#' @export
plot.bayestestR_si <- function(x, ...) {
insight::check_if_installed("see", "to plot support intervals")
NextMethod()
}


#' @export
plot.bayesfactor_parameters <- function(x, ...) {
insight::check_if_installed("see", "to plot Savage-Dickey Bayes factor")
NextMethod()
}


#' @export
plot.bayesfactor_models <- function(x, ...) {
insight::check_if_installed("see", "to plot models' Bayes factors")
NextMethod()
}


#' @export
plot.estimate_density <- function(x, ...) {
insight::check_if_installed("see", "to plot densities")
NextMethod()
}


#' @export
plot.estimate_density_df <- function(x, ...) {
insight::check_if_installed("see", "to plot models' densities")
NextMethod()
}


#' @export
plot.p_significance <- function(x, ...) {
insight::check_if_installed("see", "to plot practical significance")
NextMethod()
}


#' @export
plot.describe_posterior <- function(x, stack = FALSE, ...) {
insight::check_if_installed("see", "to plot posterior samples")
Expand All @@ -91,6 +98,6 @@ plot.describe_posterior <- function(x, stack = FALSE, ...) {
graphics::plot(estimate_density(model), stack = stack, ...) +
ggplot2::labs(title = "Posterior Samples", x = NULL, y = NULL)
} else {
warning(insight::format_message("Could not find model-object. Try ' plot(estimate_density(model))' instead."), call. = FALSE)
insight::format_warning("Could not find model-object. Try `plot(estimate_density(model))` instead.")
}
}
91 changes: 58 additions & 33 deletions R/point_estimate.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,22 @@
#'
#' Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior distributions.
#'
#' @param centrality The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: `"median"`, `"mean"`, `"MAP"` or `"all"`.
#' @param dispersion Logical, if `TRUE`, computes indices of dispersion related to the estimate(s) (`SD` and `MAD` for `mean` and `median`, respectively).
#' @param threshold For `centrality = "trimmed"` (i.e. trimmed mean), indicates the fraction (0 to 0.5) of observations to be trimmed from each end of the vector before the mean is computed.
#' @param centrality The point-estimates (centrality indices) to compute. Character
#' (vector) or list with one or more of these options: `"median"`, `"mean"`, `"MAP"`
#' (see [`map_estimate()`]), `"trimmed"` (which is just `mean(x, trim = threshold)`),
#' `"mode"` or `"all"`.
#' @param dispersion Logical, if `TRUE`, computes indices of dispersion related
#' to the estimate(s) (`SD` and `MAD` for `mean` and `median`, respectively).
#' Dispersion is not available for `"MAP"` or `"mode"` centrality indices.
#' @param threshold For `centrality = "trimmed"` (i.e. trimmed mean), indicates
#' the fraction (0 to 0.5) of observations to be trimmed from each end of the
#' vector before the mean is computed.
#' @param ... Additional arguments to be passed to or from methods.
#' @inheritParams hdi
#'
#' @references Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). *Indices of Effect Existence and Significance in the Bayesian Framework*. Frontiers in Psychology 2019;10:2767. \doi{10.3389/fpsyg.2019.02767}
#' @references Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D.
#' (2019). *Indices of Effect Existence and Significance in the Bayesian Framework*.
#' Frontiers in Psychology 2019;10:2767. \doi{10.3389/fpsyg.2019.02767}
#'
#' @note There is also a [`plot()`-method](https://easystats.github.io/see/articles/bayestestR.html) implemented in the \href{https://easystats.github.io/see/}{\pkg{see}-package}.
#'
Expand Down Expand Up @@ -59,13 +68,15 @@ point_estimate <- function(x, ...) {

#' @export
point_estimate.default <- function(x, ...) {
stop(insight::format_message(paste0("'point_estimate()' is not yet implemented for objects of class '", class(x)[1], "'.")), call. = FALSE)
insight::format_error(
paste0("'point_estimate()' is not yet implemented for objects of class '", class(x)[1], "'.")
)
}


#' @rdname point_estimate
#' @export
point_estimate.numeric <- function(x, centrality = "all", dispersion = FALSE, threshold = .1, ...) {
point_estimate.numeric <- function(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...) {
centrality <- match.arg(tolower(centrality), c("median", "mean", "map", "trimmed", "mode", "all"), several.ok = TRUE)
if ("all" %in% centrality) {
estimate_list <- c("median", "mean", "map")
Expand Down Expand Up @@ -119,15 +130,8 @@ point_estimate.numeric <- function(x, centrality = "all", dispersion = FALSE, th
}


.mode_estimate <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}



#' @export
point_estimate.data.frame <- function(x, centrality = "all", dispersion = FALSE, threshold = .1, ...) {
point_estimate.data.frame <- function(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...) {
x <- .select_nums(x)

if (ncol(x) == 1) {
Expand All @@ -148,8 +152,14 @@ point_estimate.data.frame <- function(x, centrality = "all", dispersion = FALSE,


#' @export
point_estimate.draws <- function(x, centrality = "all", dispersion = FALSE, threshold = .1, ...) {
point_estimate(.posterior_draws_to_df(x), centrality = centrality, dispersion = dispersion, threshold = threshold, ...)
point_estimate.draws <- function(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...) {
point_estimate(
.posterior_draws_to_df(x),
centrality = centrality,
dispersion = dispersion,
threshold = threshold,
...
)
}

#' @export
Expand Down Expand Up @@ -186,16 +196,25 @@ point_estimate.BGGM <- point_estimate.bcplm
#' @export
point_estimate.bamlss <- function(x, centrality = "all", dispersion = FALSE, component = c("conditional", "location", "all"), ...) {
component <- match.arg(component)
out <- point_estimate(insight::get_parameters(x, component = component), centrality = centrality, dispersion = dispersion, ...)
out <- .add_clean_parameters_attribute(out, x)
out
out <- point_estimate(
insight::get_parameters(x, component = component),
centrality = centrality,
dispersion = dispersion,
...
)
.add_clean_parameters_attribute(out, x)
}


#' @export
point_estimate.MCMCglmm <- function(x, centrality = "all", dispersion = FALSE, ...) {
nF <- x$Fixed$nfl
point_estimate(as.data.frame(x$Sol[, 1:nF, drop = FALSE]), centrality = centrality, dispersion = dispersion, ...)
point_estimate(
as.data.frame(x$Sol[, 1:nF, drop = FALSE]),
centrality = centrality,
dispersion = dispersion,
...
)
}


Expand All @@ -212,17 +231,6 @@ point_estimate.emmGrid <- function(x, centrality = "all", dispersion = FALSE, ..
point_estimate.emm_list <- point_estimate.emmGrid


# Helper ------------------------------------------------------------------



#' @keywords internal
.point_estimate_models <- function(x, effects, component, parameters, centrality = "all", dispersion = FALSE, ...) {
out <- point_estimate(insight::get_parameters(x, effects = effects, component = component, parameters = parameters), centrality = centrality, dispersion = dispersion, ...)
out
}


#' @rdname point_estimate
#' @export
point_estimate.stanreg <- function(x, centrality = "all", dispersion = FALSE, effects = c("fixed", "random", "all"), component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"), parameters = NULL, ...) {
Expand Down Expand Up @@ -294,7 +302,6 @@ point_estimate.sim.merMod <- function(x, centrality = "all", dispersion = FALSE,
}



#' @export
point_estimate.sim <- function(x, centrality = "all", dispersion = FALSE, parameters = NULL, ...) {
out <- .point_estimate_models(
Expand All @@ -314,7 +321,6 @@ point_estimate.sim <- function(x, centrality = "all", dispersion = FALSE, parame
}



#' @rdname point_estimate
#' @export
point_estimate.BFBayesFactor <- function(x, centrality = "all", dispersion = FALSE, ...) {
Expand All @@ -341,3 +347,22 @@ point_estimate.get_predicted <- function(x, ...) {
as.numeric(x)
}
}


# Helper ------------------------------------------------------------------

#' @keywords internal
.point_estimate_models <- function(x, effects, component, parameters, centrality = "all", dispersion = FALSE, ...) {
point_estimate(
insight::get_parameters(x, effects = effects, component = component, parameters = parameters),
centrality = centrality,
dispersion = dispersion,
...
)
}

#' @keywords internal
.mode_estimate <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
6 changes: 3 additions & 3 deletions R/reshape_iterations.R
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,9 @@ reshape_iterations <- function(x, prefix = c("draw", "iter", "iteration", "sim")
prefix <- prefix[min(which(sapply(tolower(prefix), function(prefix) sum(grepl(prefix, tolower(names(x)), fixed = TRUE)) > 1)))]

if (is.na(prefix) || is.null(prefix)) {
stop(insight::format_message(
insight::format_error(
"Couldn't find columns corresponding to iterations in your dataframe, please specify the correct prefix."
), call. = FALSE)
)
}

# Get column names
Expand All @@ -58,7 +58,7 @@ reshape_iterations <- function(x, prefix = c("draw", "iter", "iteration", "sim")
)
row.names(long) <- NULL

class(long) <- class(long)[which(class(long) == "data.frame"):length(class(long))]
class(long) <- class(long)[which(inherits(long, "data.frame")):length(class(long))]
long
}

Expand Down
Loading