Artistic Qr Code Generator uses Diffuser to invoke the stable diffusion model and ControlNet. It allows you to do the generation from the command line instead of the GUI.
If you are interesting how the Stable Diffusion and Control Net work together, here is some greate articles to start
git clone https://github.com/duanxianpi/artistic_qrcode_docker
cd artistic_qrcode_docker
docker image build -t artistic_qrcode .
docker container run --gpus all artistic_qrcode_docker -h
usage: app.py [-h] [--input INPUT] [--output OUTPUT] [--codido CODIDO] [--text TEXT] [--prompt PROMPT] [--negative_prompt NEGATIVE_PROMPT]
[--qr_code_style QR_CODE_STYLE] [--control_net CONTROL_NET] [--art_style ART_STYLE] [--noise NOISE] [--CN_Scale CN_SCALE]
[--CN_Start CN_START] [--CN_End CN_END]
options:
-h, --help show this help message and exit
--input INPUT input file will be downloaded from AWS
--output OUTPUT output will be upload from AWS to
--codido CODIDO running on codido
--text TEXT The text you want to encode in QR Code.
--prompt PROMPT What do you want your QR Code to look like?
--negative_prompt NEGATIVE_PROMPT
What you don't want to appear on the qr code
--qr_code_style QR_CODE_STYLE
What should the basic qr_code look like?
--control_net CONTROL_NET
Which QR Code ControlNet to use
--art_style ART_STYLE
Two art styles to choose from.
--noise NOISE Whether to generate noise in the margins, which would be more favorable for qrcode to hide into the drawing. "true" or
"false"
--CN_Scale CN_SCALE The weight of the ControlNet. The higher the weight, the more the output will be affected
--CN_Start CN_START The percentage of the generation process when the ControlNet starts to take effect.
--CN_End CN_END The percentage of the generation process when the ControlNet stops taking effect.